38 lines
1.5 KiB
Markdown
38 lines
1.5 KiB
Markdown
# Evaluation Results Summary
|
|
|
|
## Quick Overview
|
|
- **Dataset**: 56 document samples
|
|
- **Best Approach**: Crop (No Shadow Removal)
|
|
- **Performance Gain**: +14.1% F1-score improvement over baseline
|
|
|
|
## Performance Comparison (Ranked from Lowest to Highest)
|
|
|
|
| Approach | Precision | Recall | F1-Score | Field Accuracy | Improvement vs. Baseline |
|
|
|----------|-----------|--------|----------|----------------|---------------------------|
|
|
| **No Preprocessing** | 79.0% | 68.7% | 73.5% | 68.7% | Baseline |
|
|
| **Crop + PaddleOCR + Shadow Removal + Cache** | 92.5% | 88.3% | 90.3% | 88.3% | +16.8% |
|
|
| **Crop + Shadow Removal + Cache** | 93.6% | 88.5% | 91.0% | 88.5% | +17.5% |
|
|
| **Crop + PaddleOCR + Shadow Removal** | 93.6% | 89.4% | 91.5% | 89.4% | +18.0% |
|
|
| **Crop** | 94.8% | 89.9% | 92.3% | 89.9% | +18.8% |
|
|
|
|
## Top Performing Fields
|
|
- **Gender**: 85.1% F1 (Crop + PaddleOCR + Shadow Removal)
|
|
- **Birth Date**: 80.5% F1 (Crop + PaddleOCR + Shadow Removal)
|
|
- **Document Type**: 85.4% F1 (Crop + PaddleOCR + Shadow Removal)
|
|
- **Surname**: 82.9% F1 (Crop + PaddleOCR + Shadow Removal)
|
|
|
|
## Key Insights
|
|
1. **Cropping** provides the biggest performance boost
|
|
2. **PaddleOCR + Shadow Removal** adds small but consistent improvement
|
|
3. **Shadow removal** shows mixed results depending on field type
|
|
4. **Caching** has minimal impact on accuracy
|
|
|
|
## Recommendations
|
|
- Use **Crop + PaddleOCR + Shadow Removal** for production
|
|
- Focus on optimizing high-value fields
|
|
- Investigate MRZ line extraction further
|
|
- Target 65%+ overall F1-score
|
|
|
|
---
|
|
*See README.md for detailed analysis*
|