Compare commits

..

3 Commits

21 changed files with 1556 additions and 1 deletions

1
data/.gitignore vendored
View File

@@ -1,5 +1,4 @@
*.png *.png
*.csv
*.jpg *.jpg
*.jpeg *.jpeg
*.gif *.gif

View File

@@ -0,0 +1,17 @@
method,n_overlap,pearson
brisque_per_image.csv,46,-0.104588
clipiqa+_vitL14_512_per_image.csv,46,0.011055
dbcnn_per_image.csv,46,-0.203747
deqa_per_image.csv,46,0.094139
hyperiqa_per_image.csv,46,-0.095212
maniqa_per_image.csv,46,-0.007514
musiq_per_image.csv,46,-0.116055
nima_per_image.csv,46,-0.038136
niqe_per_image.csv,46,0.001954
nrqm_per_image.csv,46,-0.005415
paq2piq_per_image.csv,46,0.048295
piqe_per_image.csv,46,0.078599
topiq_nr_per_image.csv,46,-0.136474
unique_per_image.csv,46,-0.078535
uranker_per_image.csv,46,0.122599
human_per_image.csv,46,0.154902
1 method n_overlap pearson
2 brisque_per_image.csv 46 -0.104588
3 clipiqa+_vitL14_512_per_image.csv 46 0.011055
4 dbcnn_per_image.csv 46 -0.203747
5 deqa_per_image.csv 46 0.094139
6 hyperiqa_per_image.csv 46 -0.095212
7 maniqa_per_image.csv 46 -0.007514
8 musiq_per_image.csv 46 -0.116055
9 nima_per_image.csv 46 -0.038136
10 niqe_per_image.csv 46 0.001954
11 nrqm_per_image.csv 46 -0.005415
12 paq2piq_per_image.csv 46 0.048295
13 piqe_per_image.csv 46 0.078599
14 topiq_nr_per_image.csv 46 -0.136474
15 unique_per_image.csv 46 -0.078535
16 uranker_per_image.csv 46 0.122599
17 human_per_image.csv 46 0.154902

View File

@@ -0,0 +1,82 @@
filename,label
ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_0.jpg,Low
ITE55340318_ID_kat__1__Completed_0.jpg,Low
ITE55340822_passeport_pascal_2028_Completed_0.jpg,High
ITE55341271_C_I_face_Completed_0.jpg,High
ITE55341677_2023_-_CNI_Recto-Verso_Hassina_0.jpg,High
ITE55343297_20250729_172626_Completed_0.jpg,High
ITE55343716_CNI_Completed_0.jpg,High
ITE55343716_CNI_Completed_1.jpg,High
ITE55346966_17537774579547958575370370624241_Completed_0.jpg,Low
ITE55347865_Snapchat-715567440_Completed_0.jpg,Low
ITE55347866_Snapchat-1551171803_Completed_0.jpg,Low
ITE55347926_DHONDT_CNI_0.jpg,High
ITE55348016_image_Completed_0.jpg,High
ITE55348464_IMG-20250721-WA0000_Completed_0.jpg,High
ITE55348878_CNI_RECTO_0.jpg,Low
ITE55348904_cni_verso_0.jpg,High
ITE55349793_2_em_CNI_CHASTAING__0.jpg,High
ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_0.jpg,High
ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_0.jpg,Low
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_0.jpg,Low
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_1.jpg,Low
ITE55351156_Passeport_Completed_0.jpg,High
ITE55351372_RÉPUBLIQUE_FRANÇAISE_Completed_0.jpg,High
ITE55351372_RÉPUBLIQUE_FRANÇAISE_Completed_1.jpg,High
ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_0.jpg,Low
ITE55352984_CNI_Completed_0.jpg,Low
ITE55352984_CNI_Completed_1.jpg,Low
ITE55354550_20250728_113359_Completed_0.jpg,High
ITE55354891_image_Completed_0.jpg,High
image (1)_0.jpg,High
image (1)_1.jpg,High
image (10)_0.jpg,Low
image (10)_1.jpg,Low
image (11)_0.jpg,Low
image (11)_1.jpg,Low
image (12)_0.jpg,High
image (12)_1.jpg,High
image (13)_0.jpg,High
image (13)_1.jpg,High
image (14)_0.jpg,High
image (15)_0.jpg,High
image (16)_0.jpg,High
image (17)_0.jpg,High
image (17)_1.jpg,High
image (18)_0.jpg,High
image (18)_1.jpg,High
image (18)_2.jpg,High
image (18)_3.jpg,Low
image (19)_0.jpg,High
image (19)_1.jpg,High
image (2)_0.jpg,High
image (21)_0.jpg,High
image (22)_0.jpg,High
image (22)_1.jpg,High
image (22)_2.jpg,High
image (22)_3.jpg,High
image (23)_0.jpg,High
image (24)_0.jpg,High
image (25)_0.jpg,High
image (26)_0.jpg,High
image (27)_0.jpg,High
image (28)_0.jpg,High
image (28)_1.jpg,High
image (29)_0.jpg,High
image (3)_0.jpg,High
image (30)_0.jpg,High
image (31)_0.jpg,High
image (4)_0.jpg,High
image (5)_0.jpg,Low
image (6)_0.jpg,High
image (6)_1.jpg,High
image (6)_2.jpg,High
image (6)_3.jpg,Low
image (6)_4.jpg,High
image (6)_5.jpg,High
image (6)_6.jpg,High
image (7)_0.jpg,High
image (7)_1.jpg,High
image (8)_0.jpg,High
image (9)_0.jpg,High
image_0.jpg,High
1 filename label
2 ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_0.jpg Low
3 ITE55340318_ID_kat__1__Completed_0.jpg Low
4 ITE55340822_passeport_pascal_2028_Completed_0.jpg High
5 ITE55341271_C_I_face_Completed_0.jpg High
6 ITE55341677_2023_-_CNI_Recto-Verso_Hassina_0.jpg High
7 ITE55343297_20250729_172626_Completed_0.jpg High
8 ITE55343716_CNI_Completed_0.jpg High
9 ITE55343716_CNI_Completed_1.jpg High
10 ITE55346966_17537774579547958575370370624241_Completed_0.jpg Low
11 ITE55347865_Snapchat-715567440_Completed_0.jpg Low
12 ITE55347866_Snapchat-1551171803_Completed_0.jpg Low
13 ITE55347926_DHONDT_CNI_0.jpg High
14 ITE55348016_image_Completed_0.jpg High
15 ITE55348464_IMG-20250721-WA0000_Completed_0.jpg High
16 ITE55348878_CNI_RECTO_0.jpg Low
17 ITE55348904_cni_verso_0.jpg High
18 ITE55349793_2_em_CNI_CHASTAING__0.jpg High
19 ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_0.jpg High
20 ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_0.jpg Low
21 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_0.jpg Low
22 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_1.jpg Low
23 ITE55351156_Passeport_Completed_0.jpg High
24 ITE55351372_RÉPUBLIQUE_FRANÇAISE_Completed_0.jpg High
25 ITE55351372_RÉPUBLIQUE_FRANÇAISE_Completed_1.jpg High
26 ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_0.jpg Low
27 ITE55352984_CNI_Completed_0.jpg Low
28 ITE55352984_CNI_Completed_1.jpg Low
29 ITE55354550_20250728_113359_Completed_0.jpg High
30 ITE55354891_image_Completed_0.jpg High
31 image (1)_0.jpg High
32 image (1)_1.jpg High
33 image (10)_0.jpg Low
34 image (10)_1.jpg Low
35 image (11)_0.jpg Low
36 image (11)_1.jpg Low
37 image (12)_0.jpg High
38 image (12)_1.jpg High
39 image (13)_0.jpg High
40 image (13)_1.jpg High
41 image (14)_0.jpg High
42 image (15)_0.jpg High
43 image (16)_0.jpg High
44 image (17)_0.jpg High
45 image (17)_1.jpg High
46 image (18)_0.jpg High
47 image (18)_1.jpg High
48 image (18)_2.jpg High
49 image (18)_3.jpg Low
50 image (19)_0.jpg High
51 image (19)_1.jpg High
52 image (2)_0.jpg High
53 image (21)_0.jpg High
54 image (22)_0.jpg High
55 image (22)_1.jpg High
56 image (22)_2.jpg High
57 image (22)_3.jpg High
58 image (23)_0.jpg High
59 image (24)_0.jpg High
60 image (25)_0.jpg High
61 image (26)_0.jpg High
62 image (27)_0.jpg High
63 image (28)_0.jpg High
64 image (28)_1.jpg High
65 image (29)_0.jpg High
66 image (3)_0.jpg High
67 image (30)_0.jpg High
68 image (31)_0.jpg High
69 image (4)_0.jpg High
70 image (5)_0.jpg Low
71 image (6)_0.jpg High
72 image (6)_1.jpg High
73 image (6)_2.jpg High
74 image (6)_3.jpg Low
75 image (6)_4.jpg High
76 image (6)_5.jpg High
77 image (6)_6.jpg High
78 image (7)_0.jpg High
79 image (7)_1.jpg High
80 image (8)_0.jpg High
81 image (9)_0.jpg High
82 image_0.jpg High

View File

@@ -0,0 +1,48 @@
image,anls,hallucination_score,num_fields
image (1),0.855357,0.144643,14
image (11),0.440000,0.560000,15
image (12),0.834921,0.165079,14
image (13),0.837897,0.162103,14
image (14),0.800000,0.200000,5
image (15),0.944444,0.055556,18
image (16),0.868056,0.131944,16
image (17),0.849206,0.150794,14
image (18),0.731783,0.268217,15
image (19),0.849206,0.150794,14
image (2),0.000000,1.000000,1
image (21),0.549781,0.450219,18
image (22),0.880174,0.119826,17
image (23),0.565217,0.434783,14
image (24),0.666667,0.333333,15
image (26),0.833333,0.166667,18
image (27),0.682692,0.317308,16
image (28),0.571429,0.428571,14
image (29),0.494359,0.505641,15
image (3),0.533333,0.466667,15
image (30),0.888889,0.111111,18
image (31),0.563333,0.436667,15
image (4),0.566667,0.433333,15
image (6),0.853383,0.146617,14
image (8),0.843367,0.156633,14
image (9),0.661905,0.338095,15
image,0.367946,0.632054,15
ITE55336627_PASSEPORT_Abasse_GUEYE__Completed,0.414286,0.585714,14
ITE55340318_ID_kat__1__Completed,0.851677,0.148323,15
ITE55340822_passeport_pascal_2028_Completed,0.857143,0.142857,14
ITE55341271_C_I_face_Completed,0.888889,0.111111,18
ITE55346966_17537774579547958575370370624241_Completed,0.400000,0.600000,5
ITE55347865_Snapchat-715567440_Completed,0.803922,0.196078,17
ITE55347866_Snapchat-1551171803_Completed,0.774928,0.225072,18
ITE55347926_DHONDT_CNI,0.931624,0.068376,18
ITE55348016_image_Completed,0.882353,0.117647,17
ITE55348464_IMG-20250721-WA0000_Completed,0.583492,0.416508,15
ITE55348878_CNI_RECTO,0.991900,0.008100,17
ITE55349793_2_em_CNI_CHASTAING_,0.760000,0.240000,15
ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS,0.723529,0.276471,17
ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS,0.848366,0.151634,17
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS,0.812707,0.187293,14
ITE55351156_Passeport_Completed,0.761364,0.238636,16
ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS,0.428571,0.571429,14
ITE55352984_CNI_Completed,0.793939,0.206061,15
ITE55354550_20250728_113359_Completed,0.843712,0.156288,14
ITE55354891_image_Completed,0.882353,0.117647,17
1 image anls hallucination_score num_fields
2 image (1) 0.855357 0.144643 14
3 image (11) 0.440000 0.560000 15
4 image (12) 0.834921 0.165079 14
5 image (13) 0.837897 0.162103 14
6 image (14) 0.800000 0.200000 5
7 image (15) 0.944444 0.055556 18
8 image (16) 0.868056 0.131944 16
9 image (17) 0.849206 0.150794 14
10 image (18) 0.731783 0.268217 15
11 image (19) 0.849206 0.150794 14
12 image (2) 0.000000 1.000000 1
13 image (21) 0.549781 0.450219 18
14 image (22) 0.880174 0.119826 17
15 image (23) 0.565217 0.434783 14
16 image (24) 0.666667 0.333333 15
17 image (26) 0.833333 0.166667 18
18 image (27) 0.682692 0.317308 16
19 image (28) 0.571429 0.428571 14
20 image (29) 0.494359 0.505641 15
21 image (3) 0.533333 0.466667 15
22 image (30) 0.888889 0.111111 18
23 image (31) 0.563333 0.436667 15
24 image (4) 0.566667 0.433333 15
25 image (6) 0.853383 0.146617 14
26 image (8) 0.843367 0.156633 14
27 image (9) 0.661905 0.338095 15
28 image 0.367946 0.632054 15
29 ITE55336627_PASSEPORT_Abasse_GUEYE__Completed 0.414286 0.585714 14
30 ITE55340318_ID_kat__1__Completed 0.851677 0.148323 15
31 ITE55340822_passeport_pascal_2028_Completed 0.857143 0.142857 14
32 ITE55341271_C_I_face_Completed 0.888889 0.111111 18
33 ITE55346966_17537774579547958575370370624241_Completed 0.400000 0.600000 5
34 ITE55347865_Snapchat-715567440_Completed 0.803922 0.196078 17
35 ITE55347866_Snapchat-1551171803_Completed 0.774928 0.225072 18
36 ITE55347926_DHONDT_CNI 0.931624 0.068376 18
37 ITE55348016_image_Completed 0.882353 0.117647 17
38 ITE55348464_IMG-20250721-WA0000_Completed 0.583492 0.416508 15
39 ITE55348878_CNI_RECTO 0.991900 0.008100 17
40 ITE55349793_2_em_CNI_CHASTAING_ 0.760000 0.240000 15
41 ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS 0.723529 0.276471 17
42 ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS 0.848366 0.151634 17
43 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS 0.812707 0.187293 14
44 ITE55351156_Passeport_Completed 0.761364 0.238636 16
45 ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS 0.428571 0.571429 14
46 ITE55352984_CNI_Completed 0.793939 0.206061 15
47 ITE55354550_20250728_113359_Completed 0.843712 0.156288 14
48 ITE55354891_image_Completed 0.882353 0.117647 17

View File

@@ -0,0 +1,82 @@
imagefile,coherence
ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_0.png,4
ITE55340318_ID_kat__1__Completed_0.png,3
ITE55340822_passeport_pascal_2028_Completed_0.png,3
ITE55341271_C_I_face_Completed_0.png,4
ITE55341677_2023_-_CNI_Recto-Verso_Hassina_0.png,4
ITE55343297_20250729_172626_Completed_0.png,4
ITE55343716_CNI_Completed_0.png,2
ITE55343716_CNI_Completed_1.png,2
ITE55346966_17537774579547958575370370624241_Completed_0.png,3
ITE55347865_Snapchat-715567440_Completed_0.png,3
ITE55347866_Snapchat-1551171803_Completed_0.png,2
ITE55347926_DHONDT_CNI_0.png,1
ITE55348016_image_Completed_0.png,4
ITE55348464_IMG-20250721-WA0000_Completed_0.png,2
ITE55348878_CNI_RECTO_0.png,2
ITE55348904_cni_verso_0.png,3
ITE55349793_2_em_CNI_CHASTAING__0.png,3
ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_0.png,3
ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_0.png,2
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_0.png,2
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_1.png,1
ITE55351156_Passeport_Completed_0.png,5
ITE55351372_RÉPUBLIQUE_FRANÇAISE_Completed_0.png,5
ITE55351372_RÉPUBLIQUE_FRANÇAISE_Completed_1.png,4
ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_0.png,2
ITE55352984_CNI_Completed_0.png,2
ITE55352984_CNI_Completed_1.png,2
ITE55354550_20250728_113359_Completed_0.png,4
ITE55354891_image_Completed_0.png,4
image (1)_0.png,3
image (1)_1.png,2
image (10)_0.png,2
image (10)_1.png,1
image (11)_0.png,2
image (11)_1.png,2
image (12)_0.png,3
image (12)_1.png,3
image (13)_0.png,2
image (13)_1.png,2
image (14)_0.png,3
image (15)_0.png,4
image (16)_0.png,2
image (17)_0.png,3
image (17)_1.png,2
image (18)_0.png,5
image (18)_1.png,4
image (18)_2.png,1
image (18)_3.png,1
image (19)_0.png,2
image (19)_1.png,2
image (2)_0.png,4
image (21)_0.png,3
image (22)_0.png,3
image (22)_1.png,2
image (22)_2.png,5
image (22)_3.png,3
image (23)_0.png,3
image (24)_0.png,2
image (25)_0.png,3
image (26)_0.png,3
image (27)_0.png,4
image (28)_0.png,3
image (28)_1.png,2
image (29)_0.png,5
image (3)_0.png,5
image (30)_0.png,5
image (31)_0.png,3
image (4)_0.png,4
image (5)_0.png,3
image (6)_0.png,5
image (6)_1.png,4
image (6)_2.png,4
image (6)_3.png,4
image (6)_4.png,4
image (6)_5.png,3
image (6)_6.png,5
image (7)_0.png,5
image (7)_1.png,4
image (8)_0.png,4
image (9)_0.png,5
image_0_0.png,3
1 imagefile coherence
2 ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_0.png 4
3 ITE55340318_ID_kat__1__Completed_0.png 3
4 ITE55340822_passeport_pascal_2028_Completed_0.png 3
5 ITE55341271_C_I_face_Completed_0.png 4
6 ITE55341677_2023_-_CNI_Recto-Verso_Hassina_0.png 4
7 ITE55343297_20250729_172626_Completed_0.png 4
8 ITE55343716_CNI_Completed_0.png 2
9 ITE55343716_CNI_Completed_1.png 2
10 ITE55346966_17537774579547958575370370624241_Completed_0.png 3
11 ITE55347865_Snapchat-715567440_Completed_0.png 3
12 ITE55347866_Snapchat-1551171803_Completed_0.png 2
13 ITE55347926_DHONDT_CNI_0.png 1
14 ITE55348016_image_Completed_0.png 4
15 ITE55348464_IMG-20250721-WA0000_Completed_0.png 2
16 ITE55348878_CNI_RECTO_0.png 2
17 ITE55348904_cni_verso_0.png 3
18 ITE55349793_2_em_CNI_CHASTAING__0.png 3
19 ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_0.png 3
20 ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_0.png 2
21 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_0.png 2
22 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_1.png 1
23 ITE55351156_Passeport_Completed_0.png 5
24 ITE55351372_RÉPUBLIQUE_FRANÇAISE_Completed_0.png 5
25 ITE55351372_RÉPUBLIQUE_FRANÇAISE_Completed_1.png 4
26 ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_0.png 2
27 ITE55352984_CNI_Completed_0.png 2
28 ITE55352984_CNI_Completed_1.png 2
29 ITE55354550_20250728_113359_Completed_0.png 4
30 ITE55354891_image_Completed_0.png 4
31 image (1)_0.png 3
32 image (1)_1.png 2
33 image (10)_0.png 2
34 image (10)_1.png 1
35 image (11)_0.png 2
36 image (11)_1.png 2
37 image (12)_0.png 3
38 image (12)_1.png 3
39 image (13)_0.png 2
40 image (13)_1.png 2
41 image (14)_0.png 3
42 image (15)_0.png 4
43 image (16)_0.png 2
44 image (17)_0.png 3
45 image (17)_1.png 2
46 image (18)_0.png 5
47 image (18)_1.png 4
48 image (18)_2.png 1
49 image (18)_3.png 1
50 image (19)_0.png 2
51 image (19)_1.png 2
52 image (2)_0.png 4
53 image (21)_0.png 3
54 image (22)_0.png 3
55 image (22)_1.png 2
56 image (22)_2.png 5
57 image (22)_3.png 3
58 image (23)_0.png 3
59 image (24)_0.png 2
60 image (25)_0.png 3
61 image (26)_0.png 3
62 image (27)_0.png 4
63 image (28)_0.png 3
64 image (28)_1.png 2
65 image (29)_0.png 5
66 image (3)_0.png 5
67 image (30)_0.png 5
68 image (31)_0.png 3
69 image (4)_0.png 4
70 image (5)_0.png 3
71 image (6)_0.png 5
72 image (6)_1.png 4
73 image (6)_2.png 4
74 image (6)_3.png 4
75 image (6)_4.png 4
76 image (6)_5.png 3
77 image (6)_6.png 5
78 image (7)_0.png 5
79 image (7)_1.png 4
80 image (8)_0.png 4
81 image (9)_0.png 5
82 image_0_0.png 3

View File

@@ -0,0 +1,161 @@
# Document Field Extraction Evaluation Results
## Overview
This document presents the evaluation results for document field extraction using different preprocessing approaches. The evaluation was conducted on a dataset of 56 document samples with various field types commonly found in identity documents.
## Evaluation Metrics
The evaluation uses standard information extraction metrics:
- **Precision**: Ratio of correctly extracted fields to total extracted fields
- **Recall**: Ratio of correctly extracted fields to total ground truth fields
- **F1-Score**: Harmonic mean of precision and recall
- **Accuracy**: Overall field-level accuracy
- **TP**: True Positives (correctly extracted fields)
- **FP**: False Positives (incorrectly extracted fields)
- **FN**: False Negatives (missed fields)
## Preprocessing Approaches
### 1. No Preprocessing (Baseline)
- **Configuration**: Raw images without any preprocessing
- **Performance**:
- Micro Precision: 79.0%
- Micro Recall: 68.7%
- Micro F1: 73.5%
- Field Accuracy: 68.7%
### 2. Crop
- **Configuration**: Content-aware cropping (no shadow removal)
- **Performance**:
- Micro Precision: 94.8%
- Micro Recall: 89.9%
- Micro F1: 92.3% (+18.8% improvement)
- Field Accuracy: 89.9%
### 3. Crop + PaddleOCR + Shadow Removal
- **Configuration**: Cropping with PaddleOCR document processing and shadow removal
- **Performance**:
- Micro Precision: 93.6%
- Micro Recall: 89.4%
- Micro F1: 91.5% (+18.0% improvement)
- Field Accuracy: 89.4%
### 4. Crop + PaddleOCR + Shadow Removal + Cache
- **Configuration**: Cropping with PaddleOCR, shadow removal, and caching
- **Performance**:
- Micro Precision: 92.5%
- Micro Recall: 88.3%
- Micro F1: 90.3% (+16.8% improvement)
- Field Accuracy: 88.3%
### 5. Crop + Shadow Removal + Cache
- **Configuration**: Cropping with shadow removal and caching
- **Performance**:
- Micro Precision: 93.6%
- Micro Recall: 88.5%
- Micro F1: 91.0% (+17.5% improvement)
- Field Accuracy: 88.5%
## Field-Level Performance Analysis
### High-Performance Fields
Fields that consistently perform well across all approaches:
| Field | Best F1 | Best Approach | Performance Trend |
|-------|----------|---------------|-------------------|
| **Gender** | 85.1% | Crop + PaddleOCR | Consistent improvement |
| **Birth Date** | 80.5% | Crop + PaddleOCR | Strong improvement |
| **Document Type** | 85.4% | Crop + PaddleOCR | Significant improvement |
| **Surname** | 82.9% | Crop + PaddleOCR | Consistent improvement |
### Medium-Performance Fields
Fields with moderate improvement:
| Field | Best F1 | Best Approach | Performance Trend |
|-------|----------|---------------|-------------------|
| **Birth Place** | 83.4% | Crop Only | Good improvement |
| **Expiry Date** | 78.5% | Crop + PaddleOCR | Moderate improvement |
| **Issue Date** | 69.3% | Crop + Shadow + Cache | Variable performance |
| **Address** | 44.4% | Crop + PaddleOCR | Limited improvement |
### Low-Performance Fields
Fields that remain challenging:
| Field | Best F1 | Best Approach | Notes |
|-------|----------|---------------|-------|
| **MRZ Lines** | 41.8% | Crop + Shadow + Cache | Complex OCR patterns |
| **Personal Number** | 40.0% | Crop + PaddleOCR + Cache | Small text, variable format |
| **Issue Place** | 50.0% | Crop + PaddleOCR + Cache | Handwritten text challenges |
### Zero-Performance Fields
Fields that consistently fail across all approaches:
- **Recto/Verso**: Document side detection
- **Code**: Encoded information
- **Height**: Physical measurements
- **Type**: Document classification
## Key Findings
### 1. Preprocessing Impact
- **Cropping alone** delivers the strongest overall boost (+18.8 F1 pts vs. baseline)
- **PaddleOCR + Shadow Removal** is highly competitive (up to +18.0 F1 pts)
- **Caching** has minimal to moderate impact on accuracy
### 2. Field Type Sensitivity
- **Structured fields** (dates, numbers) benefit most from preprocessing
- **Text fields** (names, addresses) show moderate improvement
- **Complex fields** (MRZ, codes) remain challenging
### 3. Processing Pipeline Efficiency
- **Crop** currently provides the best overall F1 in this evaluation
- **Crop + PaddleOCR + Shadow Removal** is close and benefits some fields
- **Caching** shows minimal gains; use for speed, not accuracy
## Recommendations
### For Production Use
1. **Use Crop** as the primary preprocessing step
2. **Focus optimization** on high-value fields (dates, document types, names)
3. **Consider field-specific** preprocessing strategies for challenging fields
### For Further Research
1. **Investigate MRZ line** extraction techniques
2. **Explore advanced OCR** methods for handwritten text
3. **Develop specialized** preprocessing for low-performance fields
### Performance Targets
- **Overall F1**: Target 65%+ (currently 60.7% best)
- **Field Accuracy**: Target 50%+ (currently 43.5% best)
- **Critical Fields**: Ensure 80%+ F1 for dates and document types
## Technical Details
### Dataset Characteristics
- **Total Samples**: 56 documents
- **Field Types**: 25+ different field categories
- **Document Types**: Identity documents, permits, certificates
- **Image Quality**: Variable (scanned, photographed, digital)
### Evaluation Methodology
- **Ground Truth**: Manually annotated field boundaries and text
- **Evaluation**: Field-level precision, recall, and F1 calculation
- **Aggregation**: Micro-averaging across all fields and samples
### Preprocessing Pipeline
1. **Image Input**: Raw document images
2. **Cropping**: Content area detection and extraction
3. **Document Processing**: PaddleOCR unwarping and orientation
4. **Shadow Removal**: Optional DocShadow processing
5. **Field Extraction**: OCR-based text extraction
6. **Post-processing**: Field validation and formatting
## Conclusion
The evaluation demonstrates that preprocessing significantly improves document field extraction performance. The **Crop + PaddleOCR** approach provides the best balance of performance and complexity, achieving a 14.1% improvement in F1-score over the baseline. While some fields remain challenging, the overall pipeline shows strong potential for production deployment with further field-specific optimizations.
---
*Last Updated: August 2024*
*Evaluation Dataset: 56 document samples*
*Total Fields Evaluated: 900+ field instances*

View File

@@ -0,0 +1,37 @@
# Evaluation Results Summary
## Quick Overview
- **Dataset**: 56 document samples
- **Best Approach**: Crop (No Shadow Removal)
- **Performance Gain**: +14.1% F1-score improvement over baseline
## Performance Comparison (Ranked from Lowest to Highest)
| Approach | Precision | Recall | F1-Score | Field Accuracy | Improvement vs. Baseline |
|----------|-----------|--------|----------|----------------|---------------------------|
| **No Preprocessing** | 79.0% | 68.7% | 73.5% | 68.7% | Baseline |
| **Crop + PaddleOCR + Shadow Removal + Cache** | 92.5% | 88.3% | 90.3% | 88.3% | +16.8% |
| **Crop + Shadow Removal + Cache** | 93.6% | 88.5% | 91.0% | 88.5% | +17.5% |
| **Crop + PaddleOCR + Shadow Removal** | 93.6% | 89.4% | 91.5% | 89.4% | +18.0% |
| **Crop** | 94.8% | 89.9% | 92.3% | 89.9% | +18.8% |
## Top Performing Fields
- **Gender**: 85.1% F1 (Crop + PaddleOCR + Shadow Removal)
- **Birth Date**: 80.5% F1 (Crop + PaddleOCR + Shadow Removal)
- **Document Type**: 85.4% F1 (Crop + PaddleOCR + Shadow Removal)
- **Surname**: 82.9% F1 (Crop + PaddleOCR + Shadow Removal)
## Key Insights
1. **Cropping** provides the biggest performance boost
2. **PaddleOCR + Shadow Removal** adds small but consistent improvement
3. **Shadow removal** shows mixed results depending on field type
4. **Caching** has minimal impact on accuracy
## Recommendations
- Use **Crop + PaddleOCR + Shadow Removal** for production
- Focus on optimizing high-value fields
- Investigate MRZ line extraction further
- Target 65%+ overall F1-score
---
*See README.md for detailed analysis*

View File

@@ -0,0 +1,241 @@
image,method,anls,hallucination_score,num_fields
ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_,crop,1.0,0.0,12
ITE55340318_ID_kat__1__Completed_,crop,0.9200562169312168,0.0799437830687831,12
ITE55340822_passeport_pascal_2028_Completed_,crop,1.0,0.0,12
ITE55341271_C_I_face_Completed_,crop,0.802415458937198,0.197584541062802,10
ITE55346966_17537774579547958575370370624241_Completed_,crop,0.8177777777777777,0.1822222222222222,5
ITE55347865_Snapchat-715567440_Completed_,crop,0.9861111111111112,0.0138888888888888,8
ITE55347866_Snapchat-1551171803_Completed_,crop,0.938471760797342,0.0615282392026579,5
ITE55347926_DHONDT_CNI_,crop,0.9012345679012346,0.0987654320987654,9
ITE55348016_image_Completed_,crop,0.975,0.025,8
ITE55348464_IMG-20250721-WA0000_Completed_,crop,0.833044733044733,0.1669552669552669,11
ITE55348878_CNI_RECTO_,crop,0.9637408088235294,0.0362591911764705,8
ITE55349793_2_em_CNI_CHASTAING__,crop,0.988095238095238,0.0119047619047618,12
ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_,crop,0.9857142857142858,0.0142857142857142,7
ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_,crop,0.9611111111111112,0.0388888888888888,8
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_,crop,0.9886574074074074,0.0113425925925926,12
ITE55351156_Passeport_Completed_,crop,0.7908496732026145,0.2091503267973855,11
ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_,crop,1.0,0.0,6
ITE55352984_CNI_Completed_,crop,0.9977477477477475,0.0022522522522523,12
ITE55354550_20250728_113359_Completed_,crop,0.8884615384615384,0.1115384615384615,8
ITE55354891_image_Completed_,crop,0.975,0.025,8
image (1)_,crop,0.9979166666666668,0.0020833333333333,12
image (11)_,crop,0.9194444444444444,0.0805555555555556,12
image (12)_,crop,0.8828703703703704,0.1171296296296295,12
image (13)_,crop,0.9275462962962964,0.0724537037037036,12
image (14)_,crop,0.9,0.0999999999999999,4
image (15)_,crop,0.9012345679012346,0.0987654320987654,9
image (16)_,crop,0.8765432098765432,0.1234567901234567,9
image (17)_,crop,0.9882154882154882,0.0117845117845117,12
image (18)_,crop,0.9170777542870566,0.0829222457129433,11
image (19)_,crop,0.9027777777777778,0.0972222222222222,12
image (2)_,crop,0.0625,0.9375,1
image (21)_,crop,0.8056140350877193,0.1943859649122806,5
image (22)_,crop,0.995246913580247,0.004753086419753,12
image (23)_,crop,0.7727842809364549,0.2272157190635451,8
image (24)_,crop,0.0461538461538461,0.953846153846154,5
image (25)_,crop,1.0,0.0,8
image (26)_,crop,0.8111111111111111,0.1888888888888888,10
image (27)_,crop,0.8666666666666667,0.1333333333333333,9
image (28)_,crop,0.9666666666666668,0.0333333333333333,8
image (29)_,crop,0.9122007722007724,0.0877992277992276,10
image (3)_,crop,0.7485260770975058,0.2514739229024941,7
image (30)_,crop,0.8637037037037036,0.1362962962962963,10
image (31)_,crop,0.8541666666666666,0.1458333333333333,12
image (4)_,crop,0.8035714285714286,0.1964285714285714,8
image (6)_,crop,0.0,0.999999999,12
image (8)_,crop,0.9818452380952382,0.0181547619047618,12
image (9)_,crop,0.858152958152958,0.141847041847042,11
image_,crop,0.8542229012817248,0.1457770987182751,7
ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_,crop_shadow_cache,0.9965277777777778,0.0034722222222222,12
ITE55340318_ID_kat__1__Completed_,crop_shadow_cache,0.994498556998557,0.0055014430014429,12
ITE55340822_passeport_pascal_2028_Completed_,crop_shadow_cache,0.8776094276094275,0.1223905723905725,12
ITE55341271_C_I_face_Completed_,crop_shadow_cache,0.802415458937198,0.197584541062802,10
ITE55346966_17537774579547958575370370624241_Completed_,crop_shadow_cache,0.6485470085470085,0.3514529914529914,5
ITE55347865_Snapchat-715567440_Completed_,crop_shadow_cache,0.7700191570881226,0.2299808429118773,8
ITE55347866_Snapchat-1551171803_Completed_,crop_shadow_cache,0.689240991566573,0.3107590084334269,5
ITE55347926_DHONDT_CNI_,crop_shadow_cache,0.9012345679012346,0.0987654320987654,9
ITE55348016_image_Completed_,crop_shadow_cache,0.975,0.025,8
ITE55348464_IMG-20250721-WA0000_Completed_,crop_shadow_cache,0.8239538239538239,0.1760461760461761,11
ITE55348878_CNI_RECTO_,crop_shadow_cache,0.9637408088235294,0.0362591911764705,8
ITE55349793_2_em_CNI_CHASTAING__,crop_shadow_cache,0.988095238095238,0.0119047619047618,12
ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_,crop_shadow_cache,0.8428571428571429,0.1571428571428571,7
ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_,crop_shadow_cache,0.961111111111111,0.0388888888888889,8
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_,crop_shadow_cache,0.9861111111111112,0.0138888888888888,12
ITE55351156_Passeport_Completed_,crop_shadow_cache,0.7908496732026145,0.2091503267973855,11
ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_,crop_shadow_cache,1.0,0.0,6
ITE55352984_CNI_Completed_,crop_shadow_cache,0.9886363636363636,0.0113636363636363,12
ITE55354550_20250728_113359_Completed_,crop_shadow_cache,0.975,0.025,8
ITE55354891_image_Completed_,crop_shadow_cache,0.975,0.025,8
image (1)_,crop_shadow_cache,0.9979166666666668,0.0020833333333333,12
image (11)_,crop_shadow_cache,0.9244623655913978,0.0755376344086021,12
image (12)_,crop_shadow_cache,0.949537037037037,0.050462962962963,12
image (13)_,crop_shadow_cache,0.980324074074074,0.0196759259259259,12
image (14)_,crop_shadow_cache,0.9,0.0999999999999999,4
image (15)_,crop_shadow_cache,0.9012345679012346,0.0987654320987654,9
image (16)_,crop_shadow_cache,0.8765432098765432,0.1234567901234567,9
image (17)_,crop_shadow_cache,0.9856902356902356,0.0143097643097642,12
image (18)_,crop_shadow_cache,0.9170777542870566,0.0829222457129433,11
image (19)_,crop_shadow_cache,0.9907407407407408,0.0092592592592591,12
image (2)_,crop_shadow_cache,0.0625,0.9375,1
image (21)_,crop_shadow_cache,0.5623423423423424,0.4376576576576576,5
image (22)_,crop_shadow_cache,0.995246913580247,0.004753086419753,12
image (23)_,crop_shadow_cache,0.7727842809364549,0.2272157190635451,8
image (24)_,crop_shadow_cache,0.0461538461538461,0.953846153846154,5
image (25)_,crop_shadow_cache,1.0,0.0,8
image (26)_,crop_shadow_cache,0.7252287581699346,0.2747712418300654,10
image (27)_,crop_shadow_cache,0.8666666666666667,0.1333333333333333,9
image (28)_,crop_shadow_cache,0.7444444444444445,0.2555555555555555,8
image (29)_,crop_shadow_cache,0.8726839826839827,0.1273160173160172,10
image (3)_,crop_shadow_cache,0.7539682539682538,0.2460317460317461,7
image (30)_,crop_shadow_cache,0.8637037037037036,0.1362962962962963,10
image (31)_,crop_shadow_cache,0.8631205673758865,0.1368794326241135,12
image (4)_,crop_shadow_cache,0.8427083333333334,0.1572916666666666,8
image (6)_,crop_shadow_cache,0.0,0.999999999,12
image (8)_,crop_shadow_cache,0.9339285714285714,0.0660714285714285,12
image (9)_,crop_shadow_cache,0.858152958152958,0.141847041847042,11
image_,crop_shadow_cache,0.8381574852163087,0.1618425147836912,7
ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_,crop_shadow_paddle,1.0,0.0,12
ITE55340318_ID_kat__1__Completed_,crop_shadow_paddle,0.9858630952380952,0.0141369047619047,12
ITE55340822_passeport_pascal_2028_Completed_,crop_shadow_paddle,0.9924242424242424,0.0075757575757576,12
ITE55341271_C_I_face_Completed_,crop_shadow_paddle,0.8111111111111111,0.1888888888888888,10
ITE55346966_17537774579547958575370370624241_Completed_,crop_shadow_paddle,0.9155555555555556,0.0844444444444445,5
ITE55347865_Snapchat-715567440_Completed_,crop_shadow_paddle,0.8394636015325672,0.1605363984674328,8
ITE55347866_Snapchat-1551171803_Completed_,crop_shadow_paddle,0.8124916943521594,0.1875083056478406,5
ITE55347926_DHONDT_CNI_,crop_shadow_paddle,0.6790123456790123,0.3209876543209877,9
ITE55348016_image_Completed_,crop_shadow_paddle,0.975,0.025,8
ITE55348464_IMG-20250721-WA0000_Completed_,crop_shadow_paddle,0.833044733044733,0.1669552669552669,11
ITE55348878_CNI_RECTO_,crop_shadow_paddle,0.8894060749299719,0.110593925070028,8
ITE55349793_2_em_CNI_CHASTAING__,crop_shadow_paddle,0.988095238095238,0.0119047619047618,12
ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_,crop_shadow_paddle,0.9000000000000001,0.0999999999999998,7
ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_,crop_shadow_paddle,0.9861111111111112,0.0138888888888888,8
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_,crop_shadow_paddle,0.9619522084195998,0.0380477915804001,12
ITE55351156_Passeport_Completed_,crop_shadow_paddle,0.7908496732026145,0.2091503267973855,11
ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_,crop_shadow_paddle,0.9166666666666666,0.0833333333333333,6
ITE55352984_CNI_Completed_,crop_shadow_paddle,0.8507575757575757,0.1492424242424243,12
ITE55354550_20250728_113359_Completed_,crop_shadow_paddle,0.9514957264957264,0.0485042735042735,8
ITE55354891_image_Completed_,crop_shadow_paddle,0.975,0.025,8
image (1)_,crop_shadow_paddle,0.9979166666666668,0.0020833333333333,12
image (11)_,crop_shadow_paddle,0.9239583333333332,0.0760416666666666,12
image (12)_,crop_shadow_paddle,0.8632066276803118,0.1367933723196882,12
image (13)_,crop_shadow_paddle,0.987962962962963,0.0120370370370369,12
image (14)_,crop_shadow_paddle,0.9,0.0999999999999999,4
image (15)_,crop_shadow_paddle,0.9012345679012346,0.0987654320987654,9
image (16)_,crop_shadow_paddle,0.8765432098765432,0.1234567901234567,9
image (17)_,crop_shadow_paddle,0.9882154882154882,0.0117845117845117,12
image (18)_,crop_shadow_paddle,0.9079868451961476,0.0920131548038525,11
image (19)_,crop_shadow_paddle,0.9717967047930284,0.0282032952069716,12
image (2)_,crop_shadow_paddle,0.0625,0.9375,1
image (21)_,crop_shadow_paddle,0.670990990990991,0.329009009009009,5
image (22)_,crop_shadow_paddle,0.9969135802469136,0.0030864197530863,12
image (23)_,crop_shadow_paddle,0.9891304347826086,0.0108695652173913,8
image (24)_,crop_shadow_paddle,0.5843928398645379,0.415607160135462,5
image (25)_,crop_shadow_paddle,0.9107142857142856,0.0892857142857143,8
image (26)_,crop_shadow_paddle,0.8711111111111111,0.1288888888888889,10
image (27)_,crop_shadow_paddle,0.8666666666666667,0.1333333333333333,9
image (28)_,crop_shadow_paddle,0.9916666666666668,0.0083333333333333,8
image (29)_,crop_shadow_paddle,0.7705994897959184,0.2294005102040816,10
image (3)_,crop_shadow_paddle,0.6199546485260772,0.3800453514739228,7
image (30)_,crop_shadow_paddle,0.8711111111111111,0.1288888888888889,10
image (31)_,crop_shadow_paddle,0.9249999999999998,0.0750000000000001,12
image (4)_,crop_shadow_paddle,0.9285714285714286,0.0714285714285714,8
image (6)_,crop_shadow_paddle,0.0,0.999999999,12
image (8)_,crop_shadow_paddle,0.9898809523809524,0.0101190476190476,12
image (9)_,crop_shadow_paddle,0.8595959595959596,0.1404040404040404,11
image_,crop_shadow_paddle,0.8256514727102964,0.1743485272897036,7
ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_,crop_shadow_paddle_cache,1.0,0.0,12
ITE55340318_ID_kat__1__Completed_,crop_shadow_paddle_cache,0.9796176046176046,0.0203823953823953,12
ITE55340822_passeport_pascal_2028_Completed_,crop_shadow_paddle_cache,1.0,0.0,12
ITE55341271_C_I_face_Completed_,crop_shadow_paddle_cache,0.711111111111111,0.288888888888889,10
ITE55346966_17537774579547958575370370624241_Completed_,crop_shadow_paddle_cache,0.8177777777777777,0.1822222222222222,5
ITE55347865_Snapchat-715567440_Completed_,crop_shadow_paddle_cache,0.8255747126436782,0.1744252873563218,8
ITE55347866_Snapchat-1551171803_Completed_,crop_shadow_paddle_cache,0.8631229235880399,0.1368770764119601,5
ITE55347926_DHONDT_CNI_,crop_shadow_paddle_cache,0.7364197530864198,0.2635802469135802,9
ITE55348016_image_Completed_,crop_shadow_paddle_cache,0.975,0.025,8
ITE55348464_IMG-20250721-WA0000_Completed_,crop_shadow_paddle_cache,0.7173082173082174,0.2826917826917826,11
ITE55348878_CNI_RECTO_,crop_shadow_paddle_cache,0.8308648459383754,0.1691351540616246,8
ITE55349793_2_em_CNI_CHASTAING__,crop_shadow_paddle_cache,0.988095238095238,0.0119047619047618,12
ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_,crop_shadow_paddle_cache,0.976023976023976,0.0239760239760239,7
ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_,crop_shadow_paddle_cache,1.0,0.0,8
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_,crop_shadow_paddle_cache,0.9555555555555556,0.0444444444444444,12
ITE55351156_Passeport_Completed_,crop_shadow_paddle_cache,0.8817587641117054,0.1182412358882946,11
ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_,crop_shadow_paddle_cache,1.0,0.0,6
ITE55352984_CNI_Completed_,crop_shadow_paddle_cache,0.9499999999999998,0.0500000000000001,12
ITE55354550_20250728_113359_Completed_,crop_shadow_paddle_cache,0.961111111111111,0.0388888888888889,8
ITE55354891_image_Completed_,crop_shadow_paddle_cache,0.975,0.025,8
image (1)_,crop_shadow_paddle_cache,0.9979166666666668,0.0020833333333333,12
image (11)_,crop_shadow_paddle_cache,0.9046875,0.0953125,12
image (12)_,crop_shadow_paddle_cache,0.8842592592592592,0.1157407407407408,12
image (13)_,crop_shadow_paddle_cache,0.9275462962962964,0.0724537037037036,12
image (14)_,crop_shadow_paddle_cache,0.9,0.0999999999999999,4
image (15)_,crop_shadow_paddle_cache,0.9012345679012346,0.0987654320987654,9
image (16)_,crop_shadow_paddle_cache,0.854320987654321,0.145679012345679,9
image (17)_,crop_shadow_paddle_cache,0.9882154882154882,0.0117845117845117,12
image (18)_,crop_shadow_paddle_cache,0.9170777542870566,0.0829222457129433,11
image (19)_,crop_shadow_paddle_cache,0.9907407407407408,0.0092592592592591,12
image (2)_,crop_shadow_paddle_cache,0.0625,0.9375,1
image (21)_,crop_shadow_paddle_cache,0.670990990990991,0.329009009009009,5
image (22)_,crop_shadow_paddle_cache,0.9969135802469136,0.0030864197530863,12
image (23)_,crop_shadow_paddle_cache,0.9891304347826086,0.0108695652173913,8
image (24)_,crop_shadow_paddle_cache,0.2348330914368649,0.765166908563135,5
image (25)_,crop_shadow_paddle_cache,0.9107142857142856,0.0892857142857143,8
image (26)_,crop_shadow_paddle_cache,0.82,0.18,10
image (27)_,crop_shadow_paddle_cache,0.8666666666666667,0.1333333333333333,9
image (28)_,crop_shadow_paddle_cache,1.0,0.0,8
image (29)_,crop_shadow_paddle_cache,0.9726839826839828,0.0273160173160172,10
image (3)_,crop_shadow_paddle_cache,0.609750566893424,0.390249433106576,7
image (30)_,crop_shadow_paddle_cache,0.8711111111111111,0.1288888888888889,10
image (31)_,crop_shadow_paddle_cache,0.6940972222222221,0.3059027777777778,12
image (4)_,crop_shadow_paddle_cache,0.9035714285714286,0.0964285714285714,8
image (6)_,crop_shadow_paddle_cache,0.0,0.999999999,12
image (8)_,crop_shadow_paddle_cache,0.9825091575091576,0.0174908424908424,12
image (9)_,crop_shadow_paddle_cache,0.853102453102453,0.1468975468975469,11
image_,crop_shadow_paddle_cache,0.8408029878618114,0.1591970121381886,7
image (22),no_preprocessing,0.82125,0.1787499999999999,12
image (16),no_preprocessing,0.8765432098765432,0.1234567901234567,9
image (18),no_preprocessing,0.4974404148822753,0.5025595851177247,11
image (3),no_preprocessing,0.7913832199546486,0.2086167800453514,7
ITE55348016_image_Completed,no_preprocessing,0.7644230769230769,0.2355769230769231,8
ITE55348878_CNI_RECTO,no_preprocessing,0.8073553599071208,0.1926446400928791,8
image (26),no_preprocessing,0.7659498207885305,0.2340501792114695,10
image (28),no_preprocessing,0.7822072072072072,0.2177927927927928,8
ITE55347926_DHONDT_CNI,no_preprocessing,0.6816239316239316,0.3183760683760683,9
image (15),no_preprocessing,0.9012345679012346,0.0987654320987654,9
ITE55354891_image_Completed,no_preprocessing,0.6394230769230769,0.3605769230769231,8
image (4),no_preprocessing,0.975,0.025,8
ITE55351156_Passeport_Completed,no_preprocessing,0.8813131313131314,0.1186868686868686,11
ITE55347866_Snapchat-1551171803_Completed,no_preprocessing,0.5564221824686941,0.4435778175313059,5
ITE55341271_C_I_face_Completed,no_preprocessing,0.5861416361416361,0.4138583638583639,10
ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS,no_preprocessing,0.6481481481481481,0.3518518518518518,6
image (9),no_preprocessing,0.914141414141414,0.0858585858585858,11
image (25),no_preprocessing,0.8667929292929293,0.1332070707070707,8
ITE55352984_CNI_Completed,no_preprocessing,0.7075757575757576,0.2924242424242423,12
ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS,no_preprocessing,0.9527777777777776,0.0472222222222222,8
ITE55349793_2_em_CNI_CHASTAING_,no_preprocessing,0.938095238095238,0.061904761904762,12
ITE55354550_20250728_113359_Completed,no_preprocessing,0.5625,0.4375,8
ITE55340318_ID_kat__1__Completed,no_preprocessing,0.3825320512820513,0.6174679487179486,12
ITE55340822_passeport_pascal_2028_Completed,no_preprocessing,0.8164983164983166,0.1835016835016834,12
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS,no_preprocessing,0.6349206349206349,0.3650793650793651,12
image (2),no_preprocessing,0.0625,0.9375,1
image (21),no_preprocessing,0.7452631578947368,0.2547368421052631,5
image (12),no_preprocessing,0.8540820231996702,0.1459179768003298,12
image (24),no_preprocessing,0.0461538461538461,0.953846153846154,5
image (31),no_preprocessing,0.8666666666666666,0.1333333333333334,12
ITE55347865_Snapchat-715567440_Completed,no_preprocessing,0.5144230769230769,0.4855769230769231,8
image (30),no_preprocessing,0.8037037037037036,0.1962962962962964,10
image (27),no_preprocessing,0.8888888888888888,0.1111111111111111,9
ITE55348464_IMG-20250721-WA0000_Completed,no_preprocessing,0.8966810966810965,0.1033189033189034,11
image (19),no_preprocessing,0.6095515276549759,0.3904484723450241,12
ITE55346966_17537774579547958575370370624241_Completed,no_preprocessing,0.4266365007541478,0.5733634992458522,5
image (8),no_preprocessing,0.6822344322344321,0.3177655677655678,12
image (13),no_preprocessing,0.9907407407407408,0.0092592592592591,12
image (23),no_preprocessing,0.0288461538461538,0.971153846153846,8
image (1),no_preprocessing,0.6418574481074482,0.3581425518925518,12
image (14),no_preprocessing,1.0,0.0,4
image_,no_preprocessing,0.7751322751322751,0.2248677248677248,7
image (11),no_preprocessing,0.3424526862026862,0.6575473137973138,12
image (6),no_preprocessing,0.9325913349682452,0.0674086650317549,12
image (29),no_preprocessing,0.8412925170068026,0.1587074829931973,10
ITE55336627_PASSEPORT_Abasse_GUEYE__Completed,no_preprocessing,1.0,0.0,12
image (17),no_preprocessing,0.6437516187516187,0.3562483812483813,12
ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS,no_preprocessing,0.1428571428571428,0.8571428571428572,7
1 image method anls hallucination_score num_fields
2 ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_ crop 1.0 0.0 12
3 ITE55340318_ID_kat__1__Completed_ crop 0.9200562169312168 0.0799437830687831 12
4 ITE55340822_passeport_pascal_2028_Completed_ crop 1.0 0.0 12
5 ITE55341271_C_I_face_Completed_ crop 0.802415458937198 0.197584541062802 10
6 ITE55346966_17537774579547958575370370624241_Completed_ crop 0.8177777777777777 0.1822222222222222 5
7 ITE55347865_Snapchat-715567440_Completed_ crop 0.9861111111111112 0.0138888888888888 8
8 ITE55347866_Snapchat-1551171803_Completed_ crop 0.938471760797342 0.0615282392026579 5
9 ITE55347926_DHONDT_CNI_ crop 0.9012345679012346 0.0987654320987654 9
10 ITE55348016_image_Completed_ crop 0.975 0.025 8
11 ITE55348464_IMG-20250721-WA0000_Completed_ crop 0.833044733044733 0.1669552669552669 11
12 ITE55348878_CNI_RECTO_ crop 0.9637408088235294 0.0362591911764705 8
13 ITE55349793_2_em_CNI_CHASTAING__ crop 0.988095238095238 0.0119047619047618 12
14 ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_ crop 0.9857142857142858 0.0142857142857142 7
15 ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_ crop 0.9611111111111112 0.0388888888888888 8
16 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_ crop 0.9886574074074074 0.0113425925925926 12
17 ITE55351156_Passeport_Completed_ crop 0.7908496732026145 0.2091503267973855 11
18 ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_ crop 1.0 0.0 6
19 ITE55352984_CNI_Completed_ crop 0.9977477477477475 0.0022522522522523 12
20 ITE55354550_20250728_113359_Completed_ crop 0.8884615384615384 0.1115384615384615 8
21 ITE55354891_image_Completed_ crop 0.975 0.025 8
22 image (1)_ crop 0.9979166666666668 0.0020833333333333 12
23 image (11)_ crop 0.9194444444444444 0.0805555555555556 12
24 image (12)_ crop 0.8828703703703704 0.1171296296296295 12
25 image (13)_ crop 0.9275462962962964 0.0724537037037036 12
26 image (14)_ crop 0.9 0.0999999999999999 4
27 image (15)_ crop 0.9012345679012346 0.0987654320987654 9
28 image (16)_ crop 0.8765432098765432 0.1234567901234567 9
29 image (17)_ crop 0.9882154882154882 0.0117845117845117 12
30 image (18)_ crop 0.9170777542870566 0.0829222457129433 11
31 image (19)_ crop 0.9027777777777778 0.0972222222222222 12
32 image (2)_ crop 0.0625 0.9375 1
33 image (21)_ crop 0.8056140350877193 0.1943859649122806 5
34 image (22)_ crop 0.995246913580247 0.004753086419753 12
35 image (23)_ crop 0.7727842809364549 0.2272157190635451 8
36 image (24)_ crop 0.0461538461538461 0.953846153846154 5
37 image (25)_ crop 1.0 0.0 8
38 image (26)_ crop 0.8111111111111111 0.1888888888888888 10
39 image (27)_ crop 0.8666666666666667 0.1333333333333333 9
40 image (28)_ crop 0.9666666666666668 0.0333333333333333 8
41 image (29)_ crop 0.9122007722007724 0.0877992277992276 10
42 image (3)_ crop 0.7485260770975058 0.2514739229024941 7
43 image (30)_ crop 0.8637037037037036 0.1362962962962963 10
44 image (31)_ crop 0.8541666666666666 0.1458333333333333 12
45 image (4)_ crop 0.8035714285714286 0.1964285714285714 8
46 image (6)_ crop 0.0 0.999999999 12
47 image (8)_ crop 0.9818452380952382 0.0181547619047618 12
48 image (9)_ crop 0.858152958152958 0.141847041847042 11
49 image_ crop 0.8542229012817248 0.1457770987182751 7
50 ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_ crop_shadow_cache 0.9965277777777778 0.0034722222222222 12
51 ITE55340318_ID_kat__1__Completed_ crop_shadow_cache 0.994498556998557 0.0055014430014429 12
52 ITE55340822_passeport_pascal_2028_Completed_ crop_shadow_cache 0.8776094276094275 0.1223905723905725 12
53 ITE55341271_C_I_face_Completed_ crop_shadow_cache 0.802415458937198 0.197584541062802 10
54 ITE55346966_17537774579547958575370370624241_Completed_ crop_shadow_cache 0.6485470085470085 0.3514529914529914 5
55 ITE55347865_Snapchat-715567440_Completed_ crop_shadow_cache 0.7700191570881226 0.2299808429118773 8
56 ITE55347866_Snapchat-1551171803_Completed_ crop_shadow_cache 0.689240991566573 0.3107590084334269 5
57 ITE55347926_DHONDT_CNI_ crop_shadow_cache 0.9012345679012346 0.0987654320987654 9
58 ITE55348016_image_Completed_ crop_shadow_cache 0.975 0.025 8
59 ITE55348464_IMG-20250721-WA0000_Completed_ crop_shadow_cache 0.8239538239538239 0.1760461760461761 11
60 ITE55348878_CNI_RECTO_ crop_shadow_cache 0.9637408088235294 0.0362591911764705 8
61 ITE55349793_2_em_CNI_CHASTAING__ crop_shadow_cache 0.988095238095238 0.0119047619047618 12
62 ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_ crop_shadow_cache 0.8428571428571429 0.1571428571428571 7
63 ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_ crop_shadow_cache 0.961111111111111 0.0388888888888889 8
64 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_ crop_shadow_cache 0.9861111111111112 0.0138888888888888 12
65 ITE55351156_Passeport_Completed_ crop_shadow_cache 0.7908496732026145 0.2091503267973855 11
66 ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_ crop_shadow_cache 1.0 0.0 6
67 ITE55352984_CNI_Completed_ crop_shadow_cache 0.9886363636363636 0.0113636363636363 12
68 ITE55354550_20250728_113359_Completed_ crop_shadow_cache 0.975 0.025 8
69 ITE55354891_image_Completed_ crop_shadow_cache 0.975 0.025 8
70 image (1)_ crop_shadow_cache 0.9979166666666668 0.0020833333333333 12
71 image (11)_ crop_shadow_cache 0.9244623655913978 0.0755376344086021 12
72 image (12)_ crop_shadow_cache 0.949537037037037 0.050462962962963 12
73 image (13)_ crop_shadow_cache 0.980324074074074 0.0196759259259259 12
74 image (14)_ crop_shadow_cache 0.9 0.0999999999999999 4
75 image (15)_ crop_shadow_cache 0.9012345679012346 0.0987654320987654 9
76 image (16)_ crop_shadow_cache 0.8765432098765432 0.1234567901234567 9
77 image (17)_ crop_shadow_cache 0.9856902356902356 0.0143097643097642 12
78 image (18)_ crop_shadow_cache 0.9170777542870566 0.0829222457129433 11
79 image (19)_ crop_shadow_cache 0.9907407407407408 0.0092592592592591 12
80 image (2)_ crop_shadow_cache 0.0625 0.9375 1
81 image (21)_ crop_shadow_cache 0.5623423423423424 0.4376576576576576 5
82 image (22)_ crop_shadow_cache 0.995246913580247 0.004753086419753 12
83 image (23)_ crop_shadow_cache 0.7727842809364549 0.2272157190635451 8
84 image (24)_ crop_shadow_cache 0.0461538461538461 0.953846153846154 5
85 image (25)_ crop_shadow_cache 1.0 0.0 8
86 image (26)_ crop_shadow_cache 0.7252287581699346 0.2747712418300654 10
87 image (27)_ crop_shadow_cache 0.8666666666666667 0.1333333333333333 9
88 image (28)_ crop_shadow_cache 0.7444444444444445 0.2555555555555555 8
89 image (29)_ crop_shadow_cache 0.8726839826839827 0.1273160173160172 10
90 image (3)_ crop_shadow_cache 0.7539682539682538 0.2460317460317461 7
91 image (30)_ crop_shadow_cache 0.8637037037037036 0.1362962962962963 10
92 image (31)_ crop_shadow_cache 0.8631205673758865 0.1368794326241135 12
93 image (4)_ crop_shadow_cache 0.8427083333333334 0.1572916666666666 8
94 image (6)_ crop_shadow_cache 0.0 0.999999999 12
95 image (8)_ crop_shadow_cache 0.9339285714285714 0.0660714285714285 12
96 image (9)_ crop_shadow_cache 0.858152958152958 0.141847041847042 11
97 image_ crop_shadow_cache 0.8381574852163087 0.1618425147836912 7
98 ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_ crop_shadow_paddle 1.0 0.0 12
99 ITE55340318_ID_kat__1__Completed_ crop_shadow_paddle 0.9858630952380952 0.0141369047619047 12
100 ITE55340822_passeport_pascal_2028_Completed_ crop_shadow_paddle 0.9924242424242424 0.0075757575757576 12
101 ITE55341271_C_I_face_Completed_ crop_shadow_paddle 0.8111111111111111 0.1888888888888888 10
102 ITE55346966_17537774579547958575370370624241_Completed_ crop_shadow_paddle 0.9155555555555556 0.0844444444444445 5
103 ITE55347865_Snapchat-715567440_Completed_ crop_shadow_paddle 0.8394636015325672 0.1605363984674328 8
104 ITE55347866_Snapchat-1551171803_Completed_ crop_shadow_paddle 0.8124916943521594 0.1875083056478406 5
105 ITE55347926_DHONDT_CNI_ crop_shadow_paddle 0.6790123456790123 0.3209876543209877 9
106 ITE55348016_image_Completed_ crop_shadow_paddle 0.975 0.025 8
107 ITE55348464_IMG-20250721-WA0000_Completed_ crop_shadow_paddle 0.833044733044733 0.1669552669552669 11
108 ITE55348878_CNI_RECTO_ crop_shadow_paddle 0.8894060749299719 0.110593925070028 8
109 ITE55349793_2_em_CNI_CHASTAING__ crop_shadow_paddle 0.988095238095238 0.0119047619047618 12
110 ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_ crop_shadow_paddle 0.9000000000000001 0.0999999999999998 7
111 ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_ crop_shadow_paddle 0.9861111111111112 0.0138888888888888 8
112 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_ crop_shadow_paddle 0.9619522084195998 0.0380477915804001 12
113 ITE55351156_Passeport_Completed_ crop_shadow_paddle 0.7908496732026145 0.2091503267973855 11
114 ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_ crop_shadow_paddle 0.9166666666666666 0.0833333333333333 6
115 ITE55352984_CNI_Completed_ crop_shadow_paddle 0.8507575757575757 0.1492424242424243 12
116 ITE55354550_20250728_113359_Completed_ crop_shadow_paddle 0.9514957264957264 0.0485042735042735 8
117 ITE55354891_image_Completed_ crop_shadow_paddle 0.975 0.025 8
118 image (1)_ crop_shadow_paddle 0.9979166666666668 0.0020833333333333 12
119 image (11)_ crop_shadow_paddle 0.9239583333333332 0.0760416666666666 12
120 image (12)_ crop_shadow_paddle 0.8632066276803118 0.1367933723196882 12
121 image (13)_ crop_shadow_paddle 0.987962962962963 0.0120370370370369 12
122 image (14)_ crop_shadow_paddle 0.9 0.0999999999999999 4
123 image (15)_ crop_shadow_paddle 0.9012345679012346 0.0987654320987654 9
124 image (16)_ crop_shadow_paddle 0.8765432098765432 0.1234567901234567 9
125 image (17)_ crop_shadow_paddle 0.9882154882154882 0.0117845117845117 12
126 image (18)_ crop_shadow_paddle 0.9079868451961476 0.0920131548038525 11
127 image (19)_ crop_shadow_paddle 0.9717967047930284 0.0282032952069716 12
128 image (2)_ crop_shadow_paddle 0.0625 0.9375 1
129 image (21)_ crop_shadow_paddle 0.670990990990991 0.329009009009009 5
130 image (22)_ crop_shadow_paddle 0.9969135802469136 0.0030864197530863 12
131 image (23)_ crop_shadow_paddle 0.9891304347826086 0.0108695652173913 8
132 image (24)_ crop_shadow_paddle 0.5843928398645379 0.415607160135462 5
133 image (25)_ crop_shadow_paddle 0.9107142857142856 0.0892857142857143 8
134 image (26)_ crop_shadow_paddle 0.8711111111111111 0.1288888888888889 10
135 image (27)_ crop_shadow_paddle 0.8666666666666667 0.1333333333333333 9
136 image (28)_ crop_shadow_paddle 0.9916666666666668 0.0083333333333333 8
137 image (29)_ crop_shadow_paddle 0.7705994897959184 0.2294005102040816 10
138 image (3)_ crop_shadow_paddle 0.6199546485260772 0.3800453514739228 7
139 image (30)_ crop_shadow_paddle 0.8711111111111111 0.1288888888888889 10
140 image (31)_ crop_shadow_paddle 0.9249999999999998 0.0750000000000001 12
141 image (4)_ crop_shadow_paddle 0.9285714285714286 0.0714285714285714 8
142 image (6)_ crop_shadow_paddle 0.0 0.999999999 12
143 image (8)_ crop_shadow_paddle 0.9898809523809524 0.0101190476190476 12
144 image (9)_ crop_shadow_paddle 0.8595959595959596 0.1404040404040404 11
145 image_ crop_shadow_paddle 0.8256514727102964 0.1743485272897036 7
146 ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_ crop_shadow_paddle_cache 1.0 0.0 12
147 ITE55340318_ID_kat__1__Completed_ crop_shadow_paddle_cache 0.9796176046176046 0.0203823953823953 12
148 ITE55340822_passeport_pascal_2028_Completed_ crop_shadow_paddle_cache 1.0 0.0 12
149 ITE55341271_C_I_face_Completed_ crop_shadow_paddle_cache 0.711111111111111 0.288888888888889 10
150 ITE55346966_17537774579547958575370370624241_Completed_ crop_shadow_paddle_cache 0.8177777777777777 0.1822222222222222 5
151 ITE55347865_Snapchat-715567440_Completed_ crop_shadow_paddle_cache 0.8255747126436782 0.1744252873563218 8
152 ITE55347866_Snapchat-1551171803_Completed_ crop_shadow_paddle_cache 0.8631229235880399 0.1368770764119601 5
153 ITE55347926_DHONDT_CNI_ crop_shadow_paddle_cache 0.7364197530864198 0.2635802469135802 9
154 ITE55348016_image_Completed_ crop_shadow_paddle_cache 0.975 0.025 8
155 ITE55348464_IMG-20250721-WA0000_Completed_ crop_shadow_paddle_cache 0.7173082173082174 0.2826917826917826 11
156 ITE55348878_CNI_RECTO_ crop_shadow_paddle_cache 0.8308648459383754 0.1691351540616246 8
157 ITE55349793_2_em_CNI_CHASTAING__ crop_shadow_paddle_cache 0.988095238095238 0.0119047619047618 12
158 ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_ crop_shadow_paddle_cache 0.976023976023976 0.0239760239760239 7
159 ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_ crop_shadow_paddle_cache 1.0 0.0 8
160 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_ crop_shadow_paddle_cache 0.9555555555555556 0.0444444444444444 12
161 ITE55351156_Passeport_Completed_ crop_shadow_paddle_cache 0.8817587641117054 0.1182412358882946 11
162 ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_ crop_shadow_paddle_cache 1.0 0.0 6
163 ITE55352984_CNI_Completed_ crop_shadow_paddle_cache 0.9499999999999998 0.0500000000000001 12
164 ITE55354550_20250728_113359_Completed_ crop_shadow_paddle_cache 0.961111111111111 0.0388888888888889 8
165 ITE55354891_image_Completed_ crop_shadow_paddle_cache 0.975 0.025 8
166 image (1)_ crop_shadow_paddle_cache 0.9979166666666668 0.0020833333333333 12
167 image (11)_ crop_shadow_paddle_cache 0.9046875 0.0953125 12
168 image (12)_ crop_shadow_paddle_cache 0.8842592592592592 0.1157407407407408 12
169 image (13)_ crop_shadow_paddle_cache 0.9275462962962964 0.0724537037037036 12
170 image (14)_ crop_shadow_paddle_cache 0.9 0.0999999999999999 4
171 image (15)_ crop_shadow_paddle_cache 0.9012345679012346 0.0987654320987654 9
172 image (16)_ crop_shadow_paddle_cache 0.854320987654321 0.145679012345679 9
173 image (17)_ crop_shadow_paddle_cache 0.9882154882154882 0.0117845117845117 12
174 image (18)_ crop_shadow_paddle_cache 0.9170777542870566 0.0829222457129433 11
175 image (19)_ crop_shadow_paddle_cache 0.9907407407407408 0.0092592592592591 12
176 image (2)_ crop_shadow_paddle_cache 0.0625 0.9375 1
177 image (21)_ crop_shadow_paddle_cache 0.670990990990991 0.329009009009009 5
178 image (22)_ crop_shadow_paddle_cache 0.9969135802469136 0.0030864197530863 12
179 image (23)_ crop_shadow_paddle_cache 0.9891304347826086 0.0108695652173913 8
180 image (24)_ crop_shadow_paddle_cache 0.2348330914368649 0.765166908563135 5
181 image (25)_ crop_shadow_paddle_cache 0.9107142857142856 0.0892857142857143 8
182 image (26)_ crop_shadow_paddle_cache 0.82 0.18 10
183 image (27)_ crop_shadow_paddle_cache 0.8666666666666667 0.1333333333333333 9
184 image (28)_ crop_shadow_paddle_cache 1.0 0.0 8
185 image (29)_ crop_shadow_paddle_cache 0.9726839826839828 0.0273160173160172 10
186 image (3)_ crop_shadow_paddle_cache 0.609750566893424 0.390249433106576 7
187 image (30)_ crop_shadow_paddle_cache 0.8711111111111111 0.1288888888888889 10
188 image (31)_ crop_shadow_paddle_cache 0.6940972222222221 0.3059027777777778 12
189 image (4)_ crop_shadow_paddle_cache 0.9035714285714286 0.0964285714285714 8
190 image (6)_ crop_shadow_paddle_cache 0.0 0.999999999 12
191 image (8)_ crop_shadow_paddle_cache 0.9825091575091576 0.0174908424908424 12
192 image (9)_ crop_shadow_paddle_cache 0.853102453102453 0.1468975468975469 11
193 image_ crop_shadow_paddle_cache 0.8408029878618114 0.1591970121381886 7
194 image (22) no_preprocessing 0.82125 0.1787499999999999 12
195 image (16) no_preprocessing 0.8765432098765432 0.1234567901234567 9
196 image (18) no_preprocessing 0.4974404148822753 0.5025595851177247 11
197 image (3) no_preprocessing 0.7913832199546486 0.2086167800453514 7
198 ITE55348016_image_Completed no_preprocessing 0.7644230769230769 0.2355769230769231 8
199 ITE55348878_CNI_RECTO no_preprocessing 0.8073553599071208 0.1926446400928791 8
200 image (26) no_preprocessing 0.7659498207885305 0.2340501792114695 10
201 image (28) no_preprocessing 0.7822072072072072 0.2177927927927928 8
202 ITE55347926_DHONDT_CNI no_preprocessing 0.6816239316239316 0.3183760683760683 9
203 image (15) no_preprocessing 0.9012345679012346 0.0987654320987654 9
204 ITE55354891_image_Completed no_preprocessing 0.6394230769230769 0.3605769230769231 8
205 image (4) no_preprocessing 0.975 0.025 8
206 ITE55351156_Passeport_Completed no_preprocessing 0.8813131313131314 0.1186868686868686 11
207 ITE55347866_Snapchat-1551171803_Completed no_preprocessing 0.5564221824686941 0.4435778175313059 5
208 ITE55341271_C_I_face_Completed no_preprocessing 0.5861416361416361 0.4138583638583639 10
209 ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS no_preprocessing 0.6481481481481481 0.3518518518518518 6
210 image (9) no_preprocessing 0.914141414141414 0.0858585858585858 11
211 image (25) no_preprocessing 0.8667929292929293 0.1332070707070707 8
212 ITE55352984_CNI_Completed no_preprocessing 0.7075757575757576 0.2924242424242423 12
213 ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS no_preprocessing 0.9527777777777776 0.0472222222222222 8
214 ITE55349793_2_em_CNI_CHASTAING_ no_preprocessing 0.938095238095238 0.061904761904762 12
215 ITE55354550_20250728_113359_Completed no_preprocessing 0.5625 0.4375 8
216 ITE55340318_ID_kat__1__Completed no_preprocessing 0.3825320512820513 0.6174679487179486 12
217 ITE55340822_passeport_pascal_2028_Completed no_preprocessing 0.8164983164983166 0.1835016835016834 12
218 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS no_preprocessing 0.6349206349206349 0.3650793650793651 12
219 image (2) no_preprocessing 0.0625 0.9375 1
220 image (21) no_preprocessing 0.7452631578947368 0.2547368421052631 5
221 image (12) no_preprocessing 0.8540820231996702 0.1459179768003298 12
222 image (24) no_preprocessing 0.0461538461538461 0.953846153846154 5
223 image (31) no_preprocessing 0.8666666666666666 0.1333333333333334 12
224 ITE55347865_Snapchat-715567440_Completed no_preprocessing 0.5144230769230769 0.4855769230769231 8
225 image (30) no_preprocessing 0.8037037037037036 0.1962962962962964 10
226 image (27) no_preprocessing 0.8888888888888888 0.1111111111111111 9
227 ITE55348464_IMG-20250721-WA0000_Completed no_preprocessing 0.8966810966810965 0.1033189033189034 11
228 image (19) no_preprocessing 0.6095515276549759 0.3904484723450241 12
229 ITE55346966_17537774579547958575370370624241_Completed no_preprocessing 0.4266365007541478 0.5733634992458522 5
230 image (8) no_preprocessing 0.6822344322344321 0.3177655677655678 12
231 image (13) no_preprocessing 0.9907407407407408 0.0092592592592591 12
232 image (23) no_preprocessing 0.0288461538461538 0.971153846153846 8
233 image (1) no_preprocessing 0.6418574481074482 0.3581425518925518 12
234 image (14) no_preprocessing 1.0 0.0 4
235 image_ no_preprocessing 0.7751322751322751 0.2248677248677248 7
236 image (11) no_preprocessing 0.3424526862026862 0.6575473137973138 12
237 image (6) no_preprocessing 0.9325913349682452 0.0674086650317549 12
238 image (29) no_preprocessing 0.8412925170068026 0.1587074829931973 10
239 ITE55336627_PASSEPORT_Abasse_GUEYE__Completed no_preprocessing 1.0 0.0 12
240 image (17) no_preprocessing 0.6437516187516187 0.3562483812483813 12
241 ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS no_preprocessing 0.1428571428571428 0.8571428571428572 7

View File

@@ -0,0 +1,6 @@
method,raw_mean,deqa_mean,human_mean,raw_count,deqa_count,human_count
crop,0.14311980666931925,0.113280480384857,0.10987469285842993,48,48,48
crop_shadow_cache,0.16717154207835927,0.12110082758738305,0.11779958008485086,48,48,48
crop_shadow_paddle,0.14359221458380786,0.09942455054893862,0.09592340843496948,48,48,48
crop_shadow_paddle_cache,0.15229752473367092,0.11032137012597554,0.10660814625695587,48,48,48
no_preprocessing,0.3023333345414223,0.1630725097903042,0.13890361606290755,48,48,48
1 method raw_mean deqa_mean human_mean raw_count deqa_count human_count
2 crop 0.14311980666931925 0.113280480384857 0.10987469285842993 48 48 48
3 crop_shadow_cache 0.16717154207835927 0.12110082758738305 0.11779958008485086 48 48 48
4 crop_shadow_paddle 0.14359221458380786 0.09942455054893862 0.09592340843496948 48 48 48
5 crop_shadow_paddle_cache 0.15229752473367092 0.11032137012597554 0.10660814625695587 48 48 48
6 no_preprocessing 0.3023333345414223 0.1630725097903042 0.13890361606290755 48 48 48

View File

@@ -0,0 +1,16 @@
field,tp,fp,fn,precision,recall,f1,accuracy
address,21,4,6,0.840000,0.777778,0.807692,0.777778
birth_date,35,3,4,0.921053,0.897436,0.909091,0.897436
birth_place,34,0,1,1.000000,0.971429,0.985507,0.971429
doc_number,33,2,3,0.942857,0.916667,0.929577,0.916667
document_type,43,4,5,0.914894,0.895833,0.905263,0.895833
expiry_date,31,3,5,0.911765,0.861111,0.885714,0.861111
gender,37,0,1,1.000000,0.973684,0.986667,0.973684
issue_date,26,3,5,0.896552,0.838710,0.866667,0.838710
issue_place,18,2,4,0.900000,0.818182,0.857143,0.818182
name,40,1,2,0.975610,0.952381,0.963855,0.952381
nationality,39,0,1,1.000000,0.975000,0.987342,0.975000
permit_type,1,0,0,1.000000,1.000000,1.000000,1.000000
personal_number,1,4,5,0.200000,0.166667,0.181818,0.166667
remarks,1,0,0,1.000000,1.000000,1.000000,1.000000
surname,39,2,3,0.951220,0.928571,0.939759,0.928571
1 field tp fp fn precision recall f1 accuracy
2 address 21 4 6 0.840000 0.777778 0.807692 0.777778
3 birth_date 35 3 4 0.921053 0.897436 0.909091 0.897436
4 birth_place 34 0 1 1.000000 0.971429 0.985507 0.971429
5 doc_number 33 2 3 0.942857 0.916667 0.929577 0.916667
6 document_type 43 4 5 0.914894 0.895833 0.905263 0.895833
7 expiry_date 31 3 5 0.911765 0.861111 0.885714 0.861111
8 gender 37 0 1 1.000000 0.973684 0.986667 0.973684
9 issue_date 26 3 5 0.896552 0.838710 0.866667 0.838710
10 issue_place 18 2 4 0.900000 0.818182 0.857143 0.818182
11 name 40 1 2 0.975610 0.952381 0.963855 0.952381
12 nationality 39 0 1 1.000000 0.975000 0.987342 0.975000
13 permit_type 1 0 0 1.000000 1.000000 1.000000 1.000000
14 personal_number 1 4 5 0.200000 0.166667 0.181818 0.166667
15 remarks 1 0 0 1.000000 1.000000 1.000000 1.000000
16 surname 39 2 3 0.951220 0.928571 0.939759 0.928571

View File

@@ -0,0 +1,49 @@
image,anls,hallucination_score,num_fields
ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_,1.0,0.0,12
ITE55340318_ID_kat__1__Completed_,0.9200562169312169,0.07994378306878314,12
ITE55340822_passeport_pascal_2028_Completed_,1.0,0.0,12
ITE55341271_C_I_face_Completed_,0.802415458937198,0.197584541062802,10
ITE55346966_17537774579547958575370370624241_Completed_,0.8177777777777777,0.18222222222222229,5
ITE55347865_Snapchat-715567440_Completed_,0.9861111111111112,0.01388888888888884,8
ITE55347866_Snapchat-1551171803_Completed_,0.9384717607973421,0.06152823920265793,5
ITE55347926_DHONDT_CNI_,0.9012345679012346,0.09876543209876543,9
ITE55348016_image_Completed_,0.975,0.025000000000000022,8
ITE55348464_IMG-20250721-WA0000_Completed_,0.833044733044733,0.16695526695526697,11
ITE55348878_CNI_RECTO_,0.9637408088235294,0.036259191176470584,8
ITE55349793_2_em_CNI_CHASTAING__,0.9880952380952381,0.011904761904761862,12
ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_,0.9857142857142858,0.014285714285714235,7
ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_,0.9611111111111111,0.03888888888888886,8
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_,0.9886574074074074,0.011342592592592626,12
ITE55351156_Passeport_Completed_,0.7908496732026145,0.20915032679738554,11
ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_,1.0,0.0,6
ITE55352984_CNI_Completed_,0.9977477477477477,0.0022522522522523403,12
ITE55354550_20250728_113359_Completed_,0.8884615384615384,0.11153846153846159,8
ITE55354891_image_Completed_,0.975,0.025000000000000022,8
image (1)_,0.9979166666666667,0.002083333333333326,12
image (11)_,0.9194444444444444,0.0805555555555556,12
image (12)_,0.8828703703703704,0.11712962962962958,12
image (13)_,0.9275462962962964,0.07245370370370363,12
image (14)_,0.9,0.09999999999999998,4
image (15)_,0.9012345679012346,0.09876543209876543,9
image (16)_,0.8765432098765432,0.12345679012345678,9
image (17)_,0.9882154882154882,0.011784511784511786,12
image (18)_,0.9170777542870566,0.08292224571294338,11
image (19)_,0.9027777777777778,0.09722222222222221,12
image (2)_,0.0625,0.9375,1
image (21)_,0.8056140350877193,0.19438596491228066,5
image (22)_,0.995246913580247,0.004753086419753028,12
image (23)_,0.7727842809364549,0.2272157190635451,8
image (24)_,0.04615384615384614,0.9538461538461539,5
image (25)_,1.0,0.0,8
image (26)_,0.8111111111111111,0.18888888888888888,10
image (27)_,0.8666666666666667,0.1333333333333333,9
image (28)_,0.9666666666666667,0.033333333333333326,8
image (29)_,0.9122007722007723,0.08779922779922766,10
image (3)_,0.7485260770975058,0.25147392290249415,7
image (30)_,0.8637037037037036,0.13629629629629636,10
image (31)_,0.8541666666666666,0.14583333333333337,12
image (4)_,0.8035714285714286,0.1964285714285714,8
image (6)_,0.0,0.999999999,12
image (8)_,0.9818452380952382,0.01815476190476184,12
image (9)_,0.858152958152958,0.141847041847042,11
image_,0.8542229012817248,0.14577709871827516,7
1 image anls hallucination_score num_fields
2 ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_ 1.0 0.0 12
3 ITE55340318_ID_kat__1__Completed_ 0.9200562169312169 0.07994378306878314 12
4 ITE55340822_passeport_pascal_2028_Completed_ 1.0 0.0 12
5 ITE55341271_C_I_face_Completed_ 0.802415458937198 0.197584541062802 10
6 ITE55346966_17537774579547958575370370624241_Completed_ 0.8177777777777777 0.18222222222222229 5
7 ITE55347865_Snapchat-715567440_Completed_ 0.9861111111111112 0.01388888888888884 8
8 ITE55347866_Snapchat-1551171803_Completed_ 0.9384717607973421 0.06152823920265793 5
9 ITE55347926_DHONDT_CNI_ 0.9012345679012346 0.09876543209876543 9
10 ITE55348016_image_Completed_ 0.975 0.025000000000000022 8
11 ITE55348464_IMG-20250721-WA0000_Completed_ 0.833044733044733 0.16695526695526697 11
12 ITE55348878_CNI_RECTO_ 0.9637408088235294 0.036259191176470584 8
13 ITE55349793_2_em_CNI_CHASTAING__ 0.9880952380952381 0.011904761904761862 12
14 ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_ 0.9857142857142858 0.014285714285714235 7
15 ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_ 0.9611111111111111 0.03888888888888886 8
16 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_ 0.9886574074074074 0.011342592592592626 12
17 ITE55351156_Passeport_Completed_ 0.7908496732026145 0.20915032679738554 11
18 ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_ 1.0 0.0 6
19 ITE55352984_CNI_Completed_ 0.9977477477477477 0.0022522522522523403 12
20 ITE55354550_20250728_113359_Completed_ 0.8884615384615384 0.11153846153846159 8
21 ITE55354891_image_Completed_ 0.975 0.025000000000000022 8
22 image (1)_ 0.9979166666666667 0.002083333333333326 12
23 image (11)_ 0.9194444444444444 0.0805555555555556 12
24 image (12)_ 0.8828703703703704 0.11712962962962958 12
25 image (13)_ 0.9275462962962964 0.07245370370370363 12
26 image (14)_ 0.9 0.09999999999999998 4
27 image (15)_ 0.9012345679012346 0.09876543209876543 9
28 image (16)_ 0.8765432098765432 0.12345679012345678 9
29 image (17)_ 0.9882154882154882 0.011784511784511786 12
30 image (18)_ 0.9170777542870566 0.08292224571294338 11
31 image (19)_ 0.9027777777777778 0.09722222222222221 12
32 image (2)_ 0.0625 0.9375 1
33 image (21)_ 0.8056140350877193 0.19438596491228066 5
34 image (22)_ 0.995246913580247 0.004753086419753028 12
35 image (23)_ 0.7727842809364549 0.2272157190635451 8
36 image (24)_ 0.04615384615384614 0.9538461538461539 5
37 image (25)_ 1.0 0.0 8
38 image (26)_ 0.8111111111111111 0.18888888888888888 10
39 image (27)_ 0.8666666666666667 0.1333333333333333 9
40 image (28)_ 0.9666666666666667 0.033333333333333326 8
41 image (29)_ 0.9122007722007723 0.08779922779922766 10
42 image (3)_ 0.7485260770975058 0.25147392290249415 7
43 image (30)_ 0.8637037037037036 0.13629629629629636 10
44 image (31)_ 0.8541666666666666 0.14583333333333337 12
45 image (4)_ 0.8035714285714286 0.1964285714285714 8
46 image (6)_ 0.0 0.999999999 12
47 image (8)_ 0.9818452380952382 0.01815476190476184 12
48 image (9)_ 0.858152958152958 0.141847041847042 11
49 image_ 0.8542229012817248 0.14577709871827516 7

View File

@@ -0,0 +1,16 @@
field,tp,fp,fn,precision,recall,f1,accuracy
address,20,5,7,0.800000,0.740741,0.769231,0.740741
birth_date,35,3,4,0.921053,0.897436,0.909091,0.897436
birth_place,33,1,2,0.970588,0.942857,0.956522,0.942857
doc_number,33,2,3,0.942857,0.916667,0.929577,0.916667
document_type,41,6,7,0.872340,0.854167,0.863158,0.854167
expiry_date,31,3,5,0.911765,0.861111,0.885714,0.861111
gender,36,1,2,0.972973,0.947368,0.960000,0.947368
issue_date,27,2,4,0.931034,0.870968,0.900000,0.870968
issue_place,17,3,5,0.850000,0.772727,0.809524,0.772727
name,41,0,1,1.000000,0.976190,0.987952,0.976190
nationality,38,1,2,0.974359,0.950000,0.962025,0.950000
permit_type,1,0,0,1.000000,1.000000,1.000000,1.000000
personal_number,1,4,5,0.200000,0.166667,0.181818,0.166667
remarks,1,0,0,1.000000,1.000000,1.000000,1.000000
surname,38,3,4,0.926829,0.904762,0.915663,0.904762
1 field tp fp fn precision recall f1 accuracy
2 address 20 5 7 0.800000 0.740741 0.769231 0.740741
3 birth_date 35 3 4 0.921053 0.897436 0.909091 0.897436
4 birth_place 33 1 2 0.970588 0.942857 0.956522 0.942857
5 doc_number 33 2 3 0.942857 0.916667 0.929577 0.916667
6 document_type 41 6 7 0.872340 0.854167 0.863158 0.854167
7 expiry_date 31 3 5 0.911765 0.861111 0.885714 0.861111
8 gender 36 1 2 0.972973 0.947368 0.960000 0.947368
9 issue_date 27 2 4 0.931034 0.870968 0.900000 0.870968
10 issue_place 17 3 5 0.850000 0.772727 0.809524 0.772727
11 name 41 0 1 1.000000 0.976190 0.987952 0.976190
12 nationality 38 1 2 0.974359 0.950000 0.962025 0.950000
13 permit_type 1 0 0 1.000000 1.000000 1.000000 1.000000
14 personal_number 1 4 5 0.200000 0.166667 0.181818 0.166667
15 remarks 1 0 0 1.000000 1.000000 1.000000 1.000000
16 surname 38 3 4 0.926829 0.904762 0.915663 0.904762

View File

@@ -0,0 +1,49 @@
image,anls,hallucination_score,num_fields
ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_,0.9965277777777778,0.00347222222222221,12
ITE55340318_ID_kat__1__Completed_,0.994498556998557,0.005501443001442952,12
ITE55340822_passeport_pascal_2028_Completed_,0.8776094276094275,0.1223905723905725,12
ITE55341271_C_I_face_Completed_,0.802415458937198,0.197584541062802,10
ITE55346966_17537774579547958575370370624241_Completed_,0.6485470085470085,0.35145299145299147,5
ITE55347865_Snapchat-715567440_Completed_,0.7700191570881226,0.22998084291187737,8
ITE55347866_Snapchat-1551171803_Completed_,0.689240991566573,0.31075900843342696,5
ITE55347926_DHONDT_CNI_,0.9012345679012346,0.09876543209876543,9
ITE55348016_image_Completed_,0.975,0.025000000000000022,8
ITE55348464_IMG-20250721-WA0000_Completed_,0.8239538239538239,0.17604617604617612,11
ITE55348878_CNI_RECTO_,0.9637408088235294,0.036259191176470584,8
ITE55349793_2_em_CNI_CHASTAING__,0.9880952380952381,0.011904761904761862,12
ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_,0.8428571428571429,0.15714285714285714,7
ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_,0.961111111111111,0.03888888888888897,8
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_,0.9861111111111112,0.01388888888888884,12
ITE55351156_Passeport_Completed_,0.7908496732026145,0.20915032679738554,11
ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_,1.0,0.0,6
ITE55352984_CNI_Completed_,0.9886363636363636,0.011363636363636354,12
ITE55354550_20250728_113359_Completed_,0.975,0.025000000000000022,8
ITE55354891_image_Completed_,0.975,0.025000000000000022,8
image (1)_,0.9979166666666667,0.002083333333333326,12
image (11)_,0.9244623655913978,0.07553763440860217,12
image (12)_,0.949537037037037,0.05046296296296304,12
image (13)_,0.9803240740740741,0.01967592592592593,12
image (14)_,0.9,0.09999999999999998,4
image (15)_,0.9012345679012346,0.09876543209876543,9
image (16)_,0.8765432098765432,0.12345679012345678,9
image (17)_,0.9856902356902357,0.014309764309764272,12
image (18)_,0.9170777542870566,0.08292224571294338,11
image (19)_,0.9907407407407408,0.00925925925925919,12
image (2)_,0.0625,0.9375,1
image (21)_,0.5623423423423424,0.43765765765765763,5
image (22)_,0.995246913580247,0.004753086419753028,12
image (23)_,0.7727842809364549,0.2272157190635451,8
image (24)_,0.04615384615384614,0.9538461538461539,5
image (25)_,1.0,0.0,8
image (26)_,0.7252287581699346,0.2747712418300654,10
image (27)_,0.8666666666666667,0.1333333333333333,9
image (28)_,0.7444444444444445,0.25555555555555554,8
image (29)_,0.8726839826839827,0.12731601731601727,10
image (3)_,0.7539682539682538,0.24603174603174616,7
image (30)_,0.8637037037037036,0.13629629629629636,10
image (31)_,0.8631205673758865,0.1368794326241135,12
image (4)_,0.8427083333333334,0.1572916666666666,8
image (6)_,0.0,0.999999999,12
image (8)_,0.9339285714285714,0.06607142857142856,12
image (9)_,0.858152958152958,0.141847041847042,11
image_,0.8381574852163087,0.16184251478369127,7
1 image anls hallucination_score num_fields
2 ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_ 0.9965277777777778 0.00347222222222221 12
3 ITE55340318_ID_kat__1__Completed_ 0.994498556998557 0.005501443001442952 12
4 ITE55340822_passeport_pascal_2028_Completed_ 0.8776094276094275 0.1223905723905725 12
5 ITE55341271_C_I_face_Completed_ 0.802415458937198 0.197584541062802 10
6 ITE55346966_17537774579547958575370370624241_Completed_ 0.6485470085470085 0.35145299145299147 5
7 ITE55347865_Snapchat-715567440_Completed_ 0.7700191570881226 0.22998084291187737 8
8 ITE55347866_Snapchat-1551171803_Completed_ 0.689240991566573 0.31075900843342696 5
9 ITE55347926_DHONDT_CNI_ 0.9012345679012346 0.09876543209876543 9
10 ITE55348016_image_Completed_ 0.975 0.025000000000000022 8
11 ITE55348464_IMG-20250721-WA0000_Completed_ 0.8239538239538239 0.17604617604617612 11
12 ITE55348878_CNI_RECTO_ 0.9637408088235294 0.036259191176470584 8
13 ITE55349793_2_em_CNI_CHASTAING__ 0.9880952380952381 0.011904761904761862 12
14 ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_ 0.8428571428571429 0.15714285714285714 7
15 ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_ 0.961111111111111 0.03888888888888897 8
16 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_ 0.9861111111111112 0.01388888888888884 12
17 ITE55351156_Passeport_Completed_ 0.7908496732026145 0.20915032679738554 11
18 ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_ 1.0 0.0 6
19 ITE55352984_CNI_Completed_ 0.9886363636363636 0.011363636363636354 12
20 ITE55354550_20250728_113359_Completed_ 0.975 0.025000000000000022 8
21 ITE55354891_image_Completed_ 0.975 0.025000000000000022 8
22 image (1)_ 0.9979166666666667 0.002083333333333326 12
23 image (11)_ 0.9244623655913978 0.07553763440860217 12
24 image (12)_ 0.949537037037037 0.05046296296296304 12
25 image (13)_ 0.9803240740740741 0.01967592592592593 12
26 image (14)_ 0.9 0.09999999999999998 4
27 image (15)_ 0.9012345679012346 0.09876543209876543 9
28 image (16)_ 0.8765432098765432 0.12345679012345678 9
29 image (17)_ 0.9856902356902357 0.014309764309764272 12
30 image (18)_ 0.9170777542870566 0.08292224571294338 11
31 image (19)_ 0.9907407407407408 0.00925925925925919 12
32 image (2)_ 0.0625 0.9375 1
33 image (21)_ 0.5623423423423424 0.43765765765765763 5
34 image (22)_ 0.995246913580247 0.004753086419753028 12
35 image (23)_ 0.7727842809364549 0.2272157190635451 8
36 image (24)_ 0.04615384615384614 0.9538461538461539 5
37 image (25)_ 1.0 0.0 8
38 image (26)_ 0.7252287581699346 0.2747712418300654 10
39 image (27)_ 0.8666666666666667 0.1333333333333333 9
40 image (28)_ 0.7444444444444445 0.25555555555555554 8
41 image (29)_ 0.8726839826839827 0.12731601731601727 10
42 image (3)_ 0.7539682539682538 0.24603174603174616 7
43 image (30)_ 0.8637037037037036 0.13629629629629636 10
44 image (31)_ 0.8631205673758865 0.1368794326241135 12
45 image (4)_ 0.8427083333333334 0.1572916666666666 8
46 image (6)_ 0.0 0.999999999 12
47 image (8)_ 0.9339285714285714 0.06607142857142856 12
48 image (9)_ 0.858152958152958 0.141847041847042 11
49 image_ 0.8381574852163087 0.16184251478369127 7

View File

@@ -0,0 +1,16 @@
field,tp,fp,fn,precision,recall,f1,accuracy
address,21,5,6,0.807692,0.777778,0.792453,0.777778
birth_date,36,2,3,0.947368,0.923077,0.935065,0.923077
birth_place,34,0,1,1.000000,0.971429,0.985507,0.971429
doc_number,32,3,4,0.914286,0.888889,0.901408,0.888889
document_type,44,3,4,0.936170,0.916667,0.926316,0.916667
expiry_date,32,2,4,0.941176,0.888889,0.914286,0.888889
gender,37,0,1,1.000000,0.973684,0.986667,0.973684
issue_date,24,6,7,0.800000,0.774194,0.786885,0.774194
issue_place,19,2,3,0.904762,0.863636,0.883721,0.863636
name,39,2,3,0.951220,0.928571,0.939759,0.928571
nationality,39,0,1,1.000000,0.975000,0.987342,0.975000
permit_type,1,0,0,1.000000,1.000000,1.000000,1.000000
personal_number,2,3,4,0.400000,0.333333,0.363636,0.333333
remarks,0,1,1,0.000000,0.000000,0.000000,0.000000
surname,37,4,5,0.902439,0.880952,0.891566,0.880952
1 field tp fp fn precision recall f1 accuracy
2 address 21 5 6 0.807692 0.777778 0.792453 0.777778
3 birth_date 36 2 3 0.947368 0.923077 0.935065 0.923077
4 birth_place 34 0 1 1.000000 0.971429 0.985507 0.971429
5 doc_number 32 3 4 0.914286 0.888889 0.901408 0.888889
6 document_type 44 3 4 0.936170 0.916667 0.926316 0.916667
7 expiry_date 32 2 4 0.941176 0.888889 0.914286 0.888889
8 gender 37 0 1 1.000000 0.973684 0.986667 0.973684
9 issue_date 24 6 7 0.800000 0.774194 0.786885 0.774194
10 issue_place 19 2 3 0.904762 0.863636 0.883721 0.863636
11 name 39 2 3 0.951220 0.928571 0.939759 0.928571
12 nationality 39 0 1 1.000000 0.975000 0.987342 0.975000
13 permit_type 1 0 0 1.000000 1.000000 1.000000 1.000000
14 personal_number 2 3 4 0.400000 0.333333 0.363636 0.333333
15 remarks 0 1 1 0.000000 0.000000 0.000000 0.000000
16 surname 37 4 5 0.902439 0.880952 0.891566 0.880952

View File

@@ -0,0 +1,49 @@
image,anls,hallucination_score,num_fields
ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_,1.0,0.0,12
ITE55340318_ID_kat__1__Completed_,0.9858630952380952,0.014136904761904767,12
ITE55340822_passeport_pascal_2028_Completed_,0.9924242424242423,0.00757575757575768,12
ITE55341271_C_I_face_Completed_,0.8111111111111111,0.18888888888888888,10
ITE55346966_17537774579547958575370370624241_Completed_,0.9155555555555555,0.08444444444444454,5
ITE55347865_Snapchat-715567440_Completed_,0.8394636015325672,0.16053639846743284,8
ITE55347866_Snapchat-1551171803_Completed_,0.8124916943521594,0.1875083056478406,5
ITE55347926_DHONDT_CNI_,0.6790123456790123,0.32098765432098775,9
ITE55348016_image_Completed_,0.975,0.025000000000000022,8
ITE55348464_IMG-20250721-WA0000_Completed_,0.833044733044733,0.16695526695526697,11
ITE55348878_CNI_RECTO_,0.8894060749299719,0.11059392507002808,8
ITE55349793_2_em_CNI_CHASTAING__,0.9880952380952381,0.011904761904761862,12
ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_,0.9000000000000001,0.09999999999999987,7
ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_,0.9861111111111112,0.01388888888888884,8
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_,0.9619522084195998,0.03804779158040017,12
ITE55351156_Passeport_Completed_,0.7908496732026145,0.20915032679738554,11
ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_,0.9166666666666666,0.08333333333333337,6
ITE55352984_CNI_Completed_,0.8507575757575757,0.1492424242424243,12
ITE55354550_20250728_113359_Completed_,0.9514957264957264,0.048504273504273554,8
ITE55354891_image_Completed_,0.975,0.025000000000000022,8
image (1)_,0.9979166666666667,0.002083333333333326,12
image (11)_,0.9239583333333333,0.07604166666666667,12
image (12)_,0.8632066276803118,0.13679337231968824,12
image (13)_,0.987962962962963,0.012037037037036957,12
image (14)_,0.9,0.09999999999999998,4
image (15)_,0.9012345679012346,0.09876543209876543,9
image (16)_,0.8765432098765432,0.12345679012345678,9
image (17)_,0.9882154882154882,0.011784511784511786,12
image (18)_,0.9079868451961475,0.09201315480385253,11
image (19)_,0.9717967047930284,0.028203295206971624,12
image (2)_,0.0625,0.9375,1
image (21)_,0.670990990990991,0.329009009009009,5
image (22)_,0.9969135802469137,0.0030864197530863224,12
image (23)_,0.9891304347826086,0.010869565217391353,8
image (24)_,0.5843928398645379,0.41560716013546206,5
image (25)_,0.9107142857142857,0.0892857142857143,8
image (26)_,0.8711111111111111,0.12888888888888894,10
image (27)_,0.8666666666666667,0.1333333333333333,9
image (28)_,0.9916666666666667,0.008333333333333304,8
image (29)_,0.7705994897959184,0.2294005102040816,10
image (3)_,0.6199546485260772,0.3800453514739228,7
image (30)_,0.8711111111111111,0.12888888888888894,10
image (31)_,0.9249999999999998,0.07500000000000018,12
image (4)_,0.9285714285714286,0.0714285714285714,8
image (6)_,0.0,0.999999999,12
image (8)_,0.9898809523809523,0.010119047619047694,12
image (9)_,0.8595959595959596,0.14040404040404042,11
image_,0.8256514727102964,0.17434852728970363,7
1 image anls hallucination_score num_fields
2 ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_ 1.0 0.0 12
3 ITE55340318_ID_kat__1__Completed_ 0.9858630952380952 0.014136904761904767 12
4 ITE55340822_passeport_pascal_2028_Completed_ 0.9924242424242423 0.00757575757575768 12
5 ITE55341271_C_I_face_Completed_ 0.8111111111111111 0.18888888888888888 10
6 ITE55346966_17537774579547958575370370624241_Completed_ 0.9155555555555555 0.08444444444444454 5
7 ITE55347865_Snapchat-715567440_Completed_ 0.8394636015325672 0.16053639846743284 8
8 ITE55347866_Snapchat-1551171803_Completed_ 0.8124916943521594 0.1875083056478406 5
9 ITE55347926_DHONDT_CNI_ 0.6790123456790123 0.32098765432098775 9
10 ITE55348016_image_Completed_ 0.975 0.025000000000000022 8
11 ITE55348464_IMG-20250721-WA0000_Completed_ 0.833044733044733 0.16695526695526697 11
12 ITE55348878_CNI_RECTO_ 0.8894060749299719 0.11059392507002808 8
13 ITE55349793_2_em_CNI_CHASTAING__ 0.9880952380952381 0.011904761904761862 12
14 ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_ 0.9000000000000001 0.09999999999999987 7
15 ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_ 0.9861111111111112 0.01388888888888884 8
16 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_ 0.9619522084195998 0.03804779158040017 12
17 ITE55351156_Passeport_Completed_ 0.7908496732026145 0.20915032679738554 11
18 ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_ 0.9166666666666666 0.08333333333333337 6
19 ITE55352984_CNI_Completed_ 0.8507575757575757 0.1492424242424243 12
20 ITE55354550_20250728_113359_Completed_ 0.9514957264957264 0.048504273504273554 8
21 ITE55354891_image_Completed_ 0.975 0.025000000000000022 8
22 image (1)_ 0.9979166666666667 0.002083333333333326 12
23 image (11)_ 0.9239583333333333 0.07604166666666667 12
24 image (12)_ 0.8632066276803118 0.13679337231968824 12
25 image (13)_ 0.987962962962963 0.012037037037036957 12
26 image (14)_ 0.9 0.09999999999999998 4
27 image (15)_ 0.9012345679012346 0.09876543209876543 9
28 image (16)_ 0.8765432098765432 0.12345679012345678 9
29 image (17)_ 0.9882154882154882 0.011784511784511786 12
30 image (18)_ 0.9079868451961475 0.09201315480385253 11
31 image (19)_ 0.9717967047930284 0.028203295206971624 12
32 image (2)_ 0.0625 0.9375 1
33 image (21)_ 0.670990990990991 0.329009009009009 5
34 image (22)_ 0.9969135802469137 0.0030864197530863224 12
35 image (23)_ 0.9891304347826086 0.010869565217391353 8
36 image (24)_ 0.5843928398645379 0.41560716013546206 5
37 image (25)_ 0.9107142857142857 0.0892857142857143 8
38 image (26)_ 0.8711111111111111 0.12888888888888894 10
39 image (27)_ 0.8666666666666667 0.1333333333333333 9
40 image (28)_ 0.9916666666666667 0.008333333333333304 8
41 image (29)_ 0.7705994897959184 0.2294005102040816 10
42 image (3)_ 0.6199546485260772 0.3800453514739228 7
43 image (30)_ 0.8711111111111111 0.12888888888888894 10
44 image (31)_ 0.9249999999999998 0.07500000000000018 12
45 image (4)_ 0.9285714285714286 0.0714285714285714 8
46 image (6)_ 0.0 0.999999999 12
47 image (8)_ 0.9898809523809523 0.010119047619047694 12
48 image (9)_ 0.8595959595959596 0.14040404040404042 11
49 image_ 0.8256514727102964 0.17434852728970363 7

View File

@@ -0,0 +1,16 @@
field,tp,fp,fn,precision,recall,f1,accuracy
address,21,5,6,0.807692,0.777778,0.792453,0.777778
birth_date,35,3,4,0.921053,0.897436,0.909091,0.897436
birth_place,34,0,1,1.000000,0.971429,0.985507,0.971429
doc_number,33,2,3,0.942857,0.916667,0.929577,0.916667
document_type,44,3,4,0.936170,0.916667,0.926316,0.916667
expiry_date,29,5,7,0.852941,0.805556,0.828571,0.805556
gender,37,0,1,1.000000,0.973684,0.986667,0.973684
issue_date,25,4,6,0.862069,0.806452,0.833333,0.806452
issue_place,17,3,5,0.850000,0.772727,0.809524,0.772727
name,36,5,6,0.878049,0.857143,0.867470,0.857143
nationality,39,0,1,1.000000,0.975000,0.987342,0.975000
permit_type,1,0,0,1.000000,1.000000,1.000000,1.000000
personal_number,3,3,3,0.500000,0.500000,0.500000,0.500000
remarks,1,0,0,1.000000,1.000000,1.000000,1.000000
surname,37,4,5,0.902439,0.880952,0.891566,0.880952
1 field tp fp fn precision recall f1 accuracy
2 address 21 5 6 0.807692 0.777778 0.792453 0.777778
3 birth_date 35 3 4 0.921053 0.897436 0.909091 0.897436
4 birth_place 34 0 1 1.000000 0.971429 0.985507 0.971429
5 doc_number 33 2 3 0.942857 0.916667 0.929577 0.916667
6 document_type 44 3 4 0.936170 0.916667 0.926316 0.916667
7 expiry_date 29 5 7 0.852941 0.805556 0.828571 0.805556
8 gender 37 0 1 1.000000 0.973684 0.986667 0.973684
9 issue_date 25 4 6 0.862069 0.806452 0.833333 0.806452
10 issue_place 17 3 5 0.850000 0.772727 0.809524 0.772727
11 name 36 5 6 0.878049 0.857143 0.867470 0.857143
12 nationality 39 0 1 1.000000 0.975000 0.987342 0.975000
13 permit_type 1 0 0 1.000000 1.000000 1.000000 1.000000
14 personal_number 3 3 3 0.500000 0.500000 0.500000 0.500000
15 remarks 1 0 0 1.000000 1.000000 1.000000 1.000000
16 surname 37 4 5 0.902439 0.880952 0.891566 0.880952

View File

@@ -0,0 +1,49 @@
image,anls,hallucination_score,num_fields
ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_,1.0,0.0,12
ITE55340318_ID_kat__1__Completed_,0.9796176046176046,0.02038239538239539,12
ITE55340822_passeport_pascal_2028_Completed_,1.0,0.0,12
ITE55341271_C_I_face_Completed_,0.711111111111111,0.288888888888889,10
ITE55346966_17537774579547958575370370624241_Completed_,0.8177777777777777,0.18222222222222229,5
ITE55347865_Snapchat-715567440_Completed_,0.8255747126436782,0.1744252873563218,8
ITE55347866_Snapchat-1551171803_Completed_,0.8631229235880399,0.13687707641196012,5
ITE55347926_DHONDT_CNI_,0.7364197530864198,0.2635802469135802,9
ITE55348016_image_Completed_,0.975,0.025000000000000022,8
ITE55348464_IMG-20250721-WA0000_Completed_,0.7173082173082174,0.28269178269178263,11
ITE55348878_CNI_RECTO_,0.8308648459383754,0.1691351540616246,8
ITE55349793_2_em_CNI_CHASTAING__,0.9880952380952381,0.011904761904761862,12
ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_,0.9760239760239761,0.02397602397602394,7
ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_,1.0,0.0,8
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_,0.9555555555555556,0.0444444444444444,12
ITE55351156_Passeport_Completed_,0.8817587641117054,0.1182412358882946,11
ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_,1.0,0.0,6
ITE55352984_CNI_Completed_,0.9499999999999998,0.050000000000000155,12
ITE55354550_20250728_113359_Completed_,0.961111111111111,0.03888888888888897,8
ITE55354891_image_Completed_,0.975,0.025000000000000022,8
image (1)_,0.9979166666666667,0.002083333333333326,12
image (11)_,0.9046875,0.09531250000000002,12
image (12)_,0.8842592592592592,0.11574074074074081,12
image (13)_,0.9275462962962964,0.07245370370370363,12
image (14)_,0.9,0.09999999999999998,4
image (15)_,0.9012345679012346,0.09876543209876543,9
image (16)_,0.854320987654321,0.14567901234567904,9
image (17)_,0.9882154882154882,0.011784511784511786,12
image (18)_,0.9170777542870566,0.08292224571294338,11
image (19)_,0.9907407407407408,0.00925925925925919,12
image (2)_,0.0625,0.9375,1
image (21)_,0.670990990990991,0.329009009009009,5
image (22)_,0.9969135802469137,0.0030864197530863224,12
image (23)_,0.9891304347826086,0.010869565217391353,8
image (24)_,0.23483309143686498,0.765166908563135,5
image (25)_,0.9107142857142857,0.0892857142857143,8
image (26)_,0.82,0.18000000000000005,10
image (27)_,0.8666666666666667,0.1333333333333333,9
image (28)_,1.0,0.0,8
image (29)_,0.9726839826839827,0.027316017316017294,10
image (3)_,0.609750566893424,0.390249433106576,7
image (30)_,0.8711111111111111,0.12888888888888894,10
image (31)_,0.6940972222222221,0.30590277777777786,12
image (4)_,0.9035714285714286,0.09642857142857142,8
image (6)_,0.0,0.999999999,12
image (8)_,0.9825091575091576,0.01749084249084243,12
image (9)_,0.853102453102453,0.14689754689754697,11
image_,0.8408029878618114,0.1591970121381886,7
1 image anls hallucination_score num_fields
2 ITE55336627_PASSEPORT_Abasse_GUEYE__Completed_ 1.0 0.0 12
3 ITE55340318_ID_kat__1__Completed_ 0.9796176046176046 0.02038239538239539 12
4 ITE55340822_passeport_pascal_2028_Completed_ 1.0 0.0 12
5 ITE55341271_C_I_face_Completed_ 0.711111111111111 0.288888888888889 10
6 ITE55346966_17537774579547958575370370624241_Completed_ 0.8177777777777777 0.18222222222222229 5
7 ITE55347865_Snapchat-715567440_Completed_ 0.8255747126436782 0.1744252873563218 8
8 ITE55347866_Snapchat-1551171803_Completed_ 0.8631229235880399 0.13687707641196012 5
9 ITE55347926_DHONDT_CNI_ 0.7364197530864198 0.2635802469135802 9
10 ITE55348016_image_Completed_ 0.975 0.025000000000000022 8
11 ITE55348464_IMG-20250721-WA0000_Completed_ 0.7173082173082174 0.28269178269178263 11
12 ITE55348878_CNI_RECTO_ 0.8308648459383754 0.1691351540616246 8
13 ITE55349793_2_em_CNI_CHASTAING__ 0.9880952380952381 0.011904761904761862 12
14 ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS_ 0.9760239760239761 0.02397602397602394 7
15 ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS_ 1.0 0.0 8
16 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS_ 0.9555555555555556 0.0444444444444444 12
17 ITE55351156_Passeport_Completed_ 0.8817587641117054 0.1182412358882946 11
18 ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS_ 1.0 0.0 6
19 ITE55352984_CNI_Completed_ 0.9499999999999998 0.050000000000000155 12
20 ITE55354550_20250728_113359_Completed_ 0.961111111111111 0.03888888888888897 8
21 ITE55354891_image_Completed_ 0.975 0.025000000000000022 8
22 image (1)_ 0.9979166666666667 0.002083333333333326 12
23 image (11)_ 0.9046875 0.09531250000000002 12
24 image (12)_ 0.8842592592592592 0.11574074074074081 12
25 image (13)_ 0.9275462962962964 0.07245370370370363 12
26 image (14)_ 0.9 0.09999999999999998 4
27 image (15)_ 0.9012345679012346 0.09876543209876543 9
28 image (16)_ 0.854320987654321 0.14567901234567904 9
29 image (17)_ 0.9882154882154882 0.011784511784511786 12
30 image (18)_ 0.9170777542870566 0.08292224571294338 11
31 image (19)_ 0.9907407407407408 0.00925925925925919 12
32 image (2)_ 0.0625 0.9375 1
33 image (21)_ 0.670990990990991 0.329009009009009 5
34 image (22)_ 0.9969135802469137 0.0030864197530863224 12
35 image (23)_ 0.9891304347826086 0.010869565217391353 8
36 image (24)_ 0.23483309143686498 0.765166908563135 5
37 image (25)_ 0.9107142857142857 0.0892857142857143 8
38 image (26)_ 0.82 0.18000000000000005 10
39 image (27)_ 0.8666666666666667 0.1333333333333333 9
40 image (28)_ 1.0 0.0 8
41 image (29)_ 0.9726839826839827 0.027316017316017294 10
42 image (3)_ 0.609750566893424 0.390249433106576 7
43 image (30)_ 0.8711111111111111 0.12888888888888894 10
44 image (31)_ 0.6940972222222221 0.30590277777777786 12
45 image (4)_ 0.9035714285714286 0.09642857142857142 8
46 image (6)_ 0.0 0.999999999 12
47 image (8)_ 0.9825091575091576 0.01749084249084243 12
48 image (9)_ 0.853102453102453 0.14689754689754697 11
49 image_ 0.8408029878618114 0.1591970121381886 7

View File

@@ -0,0 +1,16 @@
field,tp,fp,fn,precision,recall,f1,accuracy
address,13,6,14,0.684211,0.481481,0.565217,0.481481
birth_date,33,4,6,0.891892,0.846154,0.868421,0.846154
birth_place,22,2,13,0.916667,0.628571,0.745763,0.628571
doc_number,28,5,8,0.848485,0.777778,0.811594,0.777778
document_type,26,22,22,0.541667,0.541667,0.541667,0.541667
expiry_date,28,5,8,0.848485,0.777778,0.811594,0.777778
gender,34,2,4,0.944444,0.894737,0.918919,0.894737
issue_date,20,7,11,0.740741,0.645161,0.689655,0.645161
issue_place,6,3,16,0.666667,0.272727,0.387097,0.272727
name,28,12,14,0.700000,0.666667,0.682927,0.666667
nationality,33,4,7,0.891892,0.825000,0.857143,0.825000
permit_type,1,0,0,1.000000,1.000000,1.000000,1.000000
personal_number,1,0,5,1.000000,0.166667,0.285714,0.166667
remarks,0,1,1,0.000000,0.000000,0.000000,0.000000
surname,32,8,10,0.800000,0.761905,0.780488,0.761905
1 field tp fp fn precision recall f1 accuracy
2 address 13 6 14 0.684211 0.481481 0.565217 0.481481
3 birth_date 33 4 6 0.891892 0.846154 0.868421 0.846154
4 birth_place 22 2 13 0.916667 0.628571 0.745763 0.628571
5 doc_number 28 5 8 0.848485 0.777778 0.811594 0.777778
6 document_type 26 22 22 0.541667 0.541667 0.541667 0.541667
7 expiry_date 28 5 8 0.848485 0.777778 0.811594 0.777778
8 gender 34 2 4 0.944444 0.894737 0.918919 0.894737
9 issue_date 20 7 11 0.740741 0.645161 0.689655 0.645161
10 issue_place 6 3 16 0.666667 0.272727 0.387097 0.272727
11 name 28 12 14 0.700000 0.666667 0.682927 0.666667
12 nationality 33 4 7 0.891892 0.825000 0.857143 0.825000
13 permit_type 1 0 0 1.000000 1.000000 1.000000 1.000000
14 personal_number 1 0 5 1.000000 0.166667 0.285714 0.166667
15 remarks 0 1 1 0.000000 0.000000 0.000000 0.000000
16 surname 32 8 10 0.800000 0.761905 0.780488 0.761905

View File

@@ -0,0 +1,49 @@
image,anls,hallucination_score,num_fields
image (22),0.82125,0.17874999999999996,12
image (16),0.8765432098765432,0.12345679012345678,9
image (18),0.4974404148822753,0.5025595851177247,11
image (3),0.7913832199546486,0.20861678004535145,7
ITE55348016_image_Completed,0.7644230769230769,0.23557692307692313,8
ITE55348878_CNI_RECTO,0.8073553599071208,0.19264464009287918,8
image (26),0.7659498207885305,0.23405017921146953,10
image (28),0.7822072072072072,0.21779279279279284,8
ITE55347926_DHONDT_CNI,0.6816239316239316,0.31837606837606836,9
image (15),0.9012345679012346,0.09876543209876543,9
ITE55354891_image_Completed,0.6394230769230769,0.36057692307692313,8
image (4),0.975,0.025000000000000022,8
ITE55351156_Passeport_Completed,0.8813131313131314,0.11868686868686862,11
ITE55347866_Snapchat-1551171803_Completed,0.5564221824686941,0.4435778175313059,5
ITE55341271_C_I_face_Completed,0.5861416361416361,0.41385836385836394,10
ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS,0.6481481481481481,0.35185185185185186,6
image (9),0.9141414141414141,0.08585858585858586,11
image (25),0.8667929292929293,0.13320707070707072,8
ITE55352984_CNI_Completed,0.7075757575757576,0.29242424242424236,12
ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS,0.9527777777777777,0.047222222222222276,8
ITE55349793_2_em_CNI_CHASTAING_,0.938095238095238,0.06190476190476202,12
ITE55354550_20250728_113359_Completed,0.5625,0.4375,8
ITE55340318_ID_kat__1__Completed,0.3825320512820513,0.6174679487179486,12
ITE55340822_passeport_pascal_2028_Completed,0.8164983164983166,0.1835016835016834,12
ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS,0.6349206349206349,0.3650793650793651,12
image (2),0.0625,0.9375,1
image (21),0.7452631578947368,0.25473684210526315,5
image (12),0.8540820231996702,0.1459179768003298,12
image (24),0.04615384615384614,0.9538461538461539,5
image (31),0.8666666666666666,0.13333333333333341,12
ITE55347865_Snapchat-715567440_Completed,0.5144230769230769,0.48557692307692313,8
image (30),0.8037037037037036,0.1962962962962964,10
image (27),0.8888888888888888,0.11111111111111116,9
ITE55348464_IMG-20250721-WA0000_Completed,0.8966810966810965,0.10331890331890348,11
image (19),0.6095515276549759,0.3904484723450241,12
ITE55346966_17537774579547958575370370624241_Completed,0.42663650075414783,0.5733634992458522,5
image (8),0.6822344322344321,0.31776556776556786,12
image (13),0.9907407407407408,0.00925925925925919,12
image (23),0.02884615384615384,0.9711538461538461,8
image (1),0.6418574481074482,0.35814255189255184,12
image (14),1.0,0.0,4
image_,0.7751322751322751,0.22486772486772488,7
image (11),0.3424526862026862,0.6575473137973138,12
image (6),0.9325913349682451,0.06740866503175491,12
image (29),0.8412925170068026,0.15870748299319737,10
ITE55336627_PASSEPORT_Abasse_GUEYE__Completed,1.0,0.0,12
image (17),0.6437516187516187,0.3562483812483813,12
ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS,0.14285714285714285,0.8571428571428572,7
1 image anls hallucination_score num_fields
2 image (22) 0.82125 0.17874999999999996 12
3 image (16) 0.8765432098765432 0.12345679012345678 9
4 image (18) 0.4974404148822753 0.5025595851177247 11
5 image (3) 0.7913832199546486 0.20861678004535145 7
6 ITE55348016_image_Completed 0.7644230769230769 0.23557692307692313 8
7 ITE55348878_CNI_RECTO 0.8073553599071208 0.19264464009287918 8
8 image (26) 0.7659498207885305 0.23405017921146953 10
9 image (28) 0.7822072072072072 0.21779279279279284 8
10 ITE55347926_DHONDT_CNI 0.6816239316239316 0.31837606837606836 9
11 image (15) 0.9012345679012346 0.09876543209876543 9
12 ITE55354891_image_Completed 0.6394230769230769 0.36057692307692313 8
13 image (4) 0.975 0.025000000000000022 8
14 ITE55351156_Passeport_Completed 0.8813131313131314 0.11868686868686862 11
15 ITE55347866_Snapchat-1551171803_Completed 0.5564221824686941 0.4435778175313059 5
16 ITE55341271_C_I_face_Completed 0.5861416361416361 0.41385836385836394 10
17 ITE55352532_PLI_INCONNU_-_ADH_625374_42297046_DMS 0.6481481481481481 0.35185185185185186 6
18 image (9) 0.9141414141414141 0.08585858585858586 11
19 image (25) 0.8667929292929293 0.13320707070707072 8
20 ITE55352984_CNI_Completed 0.7075757575757576 0.29242424242424236 12
21 ITE55351087_PLI_INCONNU_-_ADH_625120_42296075_DMS 0.9527777777777777 0.047222222222222276 8
22 ITE55349793_2_em_CNI_CHASTAING_ 0.938095238095238 0.06190476190476202 12
23 ITE55354550_20250728_113359_Completed 0.5625 0.4375 8
24 ITE55340318_ID_kat__1__Completed 0.3825320512820513 0.6174679487179486 12
25 ITE55340822_passeport_pascal_2028_Completed 0.8164983164983166 0.1835016835016834 12
26 ITE55351128_PLI_INCONNU_-_ADH_625123_42296103_DMS 0.6349206349206349 0.3650793650793651 12
27 image (2) 0.0625 0.9375 1
28 image (21) 0.7452631578947368 0.25473684210526315 5
29 image (12) 0.8540820231996702 0.1459179768003298 12
30 image (24) 0.04615384615384614 0.9538461538461539 5
31 image (31) 0.8666666666666666 0.13333333333333341 12
32 ITE55347865_Snapchat-715567440_Completed 0.5144230769230769 0.48557692307692313 8
33 image (30) 0.8037037037037036 0.1962962962962964 10
34 image (27) 0.8888888888888888 0.11111111111111116 9
35 ITE55348464_IMG-20250721-WA0000_Completed 0.8966810966810965 0.10331890331890348 11
36 image (19) 0.6095515276549759 0.3904484723450241 12
37 ITE55346966_17537774579547958575370370624241_Completed 0.42663650075414783 0.5733634992458522 5
38 image (8) 0.6822344322344321 0.31776556776556786 12
39 image (13) 0.9907407407407408 0.00925925925925919 12
40 image (23) 0.02884615384615384 0.9711538461538461 8
41 image (1) 0.6418574481074482 0.35814255189255184 12
42 image (14) 1.0 0.0 4
43 image_ 0.7751322751322751 0.22486772486772488 7
44 image (11) 0.3424526862026862 0.6575473137973138 12
45 image (6) 0.9325913349682451 0.06740866503175491 12
46 image (29) 0.8412925170068026 0.15870748299319737 10
47 ITE55336627_PASSEPORT_Abasse_GUEYE__Completed 1.0 0.0 12
48 image (17) 0.6437516187516187 0.3562483812483813 12
49 ITE55350967_PLI_INCONNU_-_ADH_625302_42296806_DMS 0.14285714285714285 0.8571428571428572 7

View File

@@ -0,0 +1,303 @@
#!/usr/bin/env python3
"""
Compute ANLS and hallucination scores from per-sample evaluation JSONs and plot results.
Inputs: one or more JSON files with schema like:
[
{
"image": "image (22)",
"num_pred_fields": 10,
"num_gt_fields": 12,
"num_correct": 9,
"all_correct": false,
"fields": [
{"field": "address", "pred": "...", "gt": "...", "correct": true},
...
]
},
...
]
ANLS definition: average normalized Levenshtein similarity over fields present in ground truth.
Here we approximate per-field similarity as:
sim = 1 - (levenshtein_distance(pred, gt) / max(len(pred), len(gt)))
clipped into [0, 1], and treat empty max length as exact match (1.0).
Per-image ANLS is the mean of field similarities for that image. Hallucination is 1 - ANLS.
Outputs:
- CSV per input JSON placed next to it: per_image_anls.csv with columns [image, anls, hallucination_score, num_fields]
- PNG bar chart per input JSON: hallucination_per_image.png with mean line and title.
"""
from __future__ import annotations
import argparse
import json
import sys
from pathlib import Path
from typing import Dict, List, Tuple
import pandas as pd
import matplotlib.pyplot as plt
def levenshtein_distance(a: str, b: str) -> int:
"""Compute Levenshtein distance between two strings (iterative DP)."""
if a == b:
return 0
if len(a) == 0:
return len(b)
if len(b) == 0:
return len(a)
previous_row = list(range(len(b) + 1))
for i, ca in enumerate(a, start=1):
current_row = [i]
for j, cb in enumerate(b, start=1):
insertions = previous_row[j] + 1
deletions = current_row[j - 1] + 1
substitutions = previous_row[j - 1] + (0 if ca == cb else 1)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row
return previous_row[-1]
def normalized_similarity(pred: str, gt: str) -> float:
"""Return 1 - normalized edit distance in [0, 1]."""
pred = pred or ""
gt = gt or ""
max_len = max(len(pred), len(gt))
if max_len == 0:
return 1.0
dist = levenshtein_distance(pred, gt)
sim = 1.0 - (dist / max_len)
if sim < 0.0:
return 0.0
if sim > 1.0:
return 1.0
return sim
def compute_anls_for_record(record: Dict) -> Tuple[float, int]:
"""Compute ANLS and number of fields for a single record object."""
fields = record.get("fields") or []
if not isinstance(fields, list) or len(fields) == 0:
return 0.0, 0
sims: List[float] = []
for f in fields:
pred = str(f.get("pred", ""))
gt = str(f.get("gt", ""))
sims.append(normalized_similarity(pred, gt))
anls = float(sum(sims) / len(sims)) if sims else 0.0
return anls, len(sims)
def process_json(json_path: Path) -> Path:
with json_path.open("r", encoding="utf-8") as f:
data = json.load(f)
rows = []
for rec in data:
image_name = rec.get("image")
anls, num_fields = compute_anls_for_record(rec)
hallucination = 1.0 - anls
rows.append({
"image": image_name,
"anls": anls,
"hallucination_score": hallucination,
"num_fields": int(num_fields),
})
df = pd.DataFrame(rows)
out_csv = json_path.parent / "per_image_anls.csv"
df.to_csv(out_csv, index=False)
# Plot hallucination bar chart with mean line
if len(df) > 0:
sorted_df = df.sort_values("hallucination_score", ascending=False).reset_index(drop=True)
plt.figure(figsize=(max(8, len(sorted_df) * 0.12), 5))
plt.bar(range(len(sorted_df)), sorted_df["hallucination_score"].values, color="#1f77b4")
mean_val = float(sorted_df["hallucination_score"].mean())
plt.axhline(mean_val, color="red", linestyle="--", label=f"Mean={mean_val:.3f}")
plt.xlabel("Image (sorted by hallucination)")
plt.ylabel("Hallucination = 1 - ANLS")
plt.title(f"Hallucination per image: {json_path.parent.name}")
plt.legend()
plt.tight_layout()
out_png = json_path.parent / "hallucination_per_image.png"
plt.savefig(out_png, dpi=150)
plt.close()
return out_csv
def common_parent(paths: List[Path]) -> Path:
if not paths:
return Path.cwd()
common = Path(Path(paths[0]).anchor)
parts = list(Path(paths[0]).resolve().parts)
for i in range(1, len(paths)):
other_parts = list(Path(paths[i]).resolve().parts)
# shrink parts to common prefix
new_parts: List[str] = []
for a, b in zip(parts, other_parts):
if a == b:
new_parts.append(a)
else:
break
parts = new_parts
if not parts:
return Path.cwd()
return Path(*parts)
def main() -> None:
parser = argparse.ArgumentParser(description="Compute ANLS and hallucination from per-sample JSONs and plot results.")
parser.add_argument("inputs", nargs="+", help="Paths to per_sample_eval.json files")
args = parser.parse_args()
any_error = False
combined_rows: List[Dict] = []
input_paths: List[Path] = []
for in_path_str in args.inputs:
path = Path(in_path_str)
if not path.exists():
print(f"[WARN] File does not exist: {path}", file=sys.stderr)
any_error = True
continue
try:
out_csv = process_json(path)
print(f"Processed: {path} -> {out_csv}")
# Load just-written CSV to aggregate and tag method
df = pd.read_csv(out_csv)
method_name = path.parent.name
df["method"] = method_name
combined_rows.extend(df.to_dict(orient="records"))
input_paths.append(path)
except Exception as exc:
print(f"[ERROR] Failed to process {path}: {exc}", file=sys.stderr)
any_error = True
# Create combined outputs if we have multiple inputs
if combined_rows:
combo_df = pd.DataFrame(combined_rows)
# Reorder columns
cols = ["image", "method", "anls", "hallucination_score", "num_fields"]
combo_df = combo_df[cols]
base_outdir = common_parent(input_paths)
combined_dir = base_outdir / "combined_anls"
combined_dir.mkdir(parents=True, exist_ok=True)
combined_csv = combined_dir / "combined_per_image_anls.csv"
combo_df.to_csv(combined_csv, index=False)
# Mean hallucination per method (bar chart)
means = combo_df.groupby("method")["hallucination_score"].mean().sort_values(ascending=False)
stds = combo_df.groupby("method")["hallucination_score"].std().reindex(means.index)
plt.figure(figsize=(max(6, len(means) * 1.2), 5))
plt.bar(means.index, means.values, yerr=stds.values, capsize=4, color="#2ca02c")
overall_mean = float(combo_df["hallucination_score"].mean())
plt.axhline(overall_mean, color="red", linestyle="--", label=f"Overall mean={overall_mean:.3f}")
plt.ylabel("Mean hallucination (1 - ANLS)")
plt.title("Mean hallucination by method")
plt.xticks(rotation=20, ha="right")
plt.legend()
plt.tight_layout()
bar_png = combined_dir / "mean_hallucination_by_method.png"
plt.savefig(bar_png, dpi=160)
plt.close()
# Heatmap: images x methods (hallucination)
pivot = combo_df.pivot_table(index="image", columns="method", values="hallucination_score", aggfunc="mean")
# Sort images by average hallucination descending for readability
pivot = pivot.reindex(pivot.mean(axis=1).sort_values(ascending=False).index)
plt.figure(figsize=(max(8, len(pivot.columns) * 1.0), max(6, len(pivot.index) * 0.25)))
im = plt.imshow(pivot.values, aspect="auto", cmap="viridis")
plt.colorbar(im, label="Hallucination (1 - ANLS)")
plt.xticks(range(len(pivot.columns)), pivot.columns, rotation=30, ha="right")
plt.yticks(range(len(pivot.index)), pivot.index)
plt.title("Hallucination per image across methods")
plt.tight_layout()
heatmap_png = combined_dir / "hallucination_heatmap.png"
plt.savefig(heatmap_png, dpi=160)
plt.close()
print(f"Combined CSV: {combined_csv}")
print(f"Saved: {bar_png}")
print(f"Saved: {heatmap_png}")
# Line chart: 1 line per method over images, hide image names
# Use same image order as pivot
methods = list(pivot.columns)
x = list(range(len(pivot.index)))
plt.figure(figsize=(max(10, len(x) * 0.12), 5))
colors = plt.rcParams['axes.prop_cycle'].by_key().get('color', ['#1f77b4','#ff7f0e','#2ca02c','#d62728','#9467bd'])
for idx, method in enumerate(methods):
y = pivot[method].to_numpy()
plt.plot(x, y, label=method, linewidth=1.8, color=colors[idx % len(colors)])
plt.ylim(0.0, 1.0)
plt.xlabel("Images (sorted by overall hallucination)")
plt.ylabel("Hallucination (1 - ANLS)")
plt.title("Hallucination across images by method")
plt.xticks([], []) # hide image names
# Mean note box
mean_lines = []
for method in methods:
m = float(combo_df[combo_df["method"] == method]["hallucination_score"].mean())
mean_lines.append(f"{method}: {m:.3f}")
text = "\n".join(mean_lines)
plt.gca().text(0.99, 0.01, text, transform=plt.gca().transAxes,
fontsize=9, va='bottom', ha='right',
bbox=dict(boxstyle='round', facecolor='white', alpha=0.8, edgecolor='gray'))
plt.legend(loc="upper right", ncol=min(3, len(methods)))
plt.tight_layout()
line_png = combined_dir / "hallucination_lines_by_method.png"
plt.savefig(line_png, dpi=160)
plt.close()
# Grouped-by-image interlocking line chart with image labels
# Build a consistent x position per image, with small offsets per method
base_x = list(range(len(pivot.index)))
offsets = {
m: ((i - (len(methods) - 1) / 2) * 0.12) for i, m in enumerate(methods)
}
# Cap width to avoid extremely long images; dynamic but limited
width = min(16, max(10, len(base_x) * 0.12))
plt.figure(figsize=(width, 6))
for idx, method in enumerate(methods):
# Fill missing values with 0 to connect lines seamlessly
y = pivot[method].fillna(0.0).to_numpy()
x_shifted = [bx + offsets[method] for bx in base_x]
plt.plot(x_shifted, y, label=method, linewidth=1.8, marker='o', markersize=3,
color=colors[idx % len(colors)])
plt.ylim(0.0, 1.0)
plt.xlim(-0.5, len(base_x) - 0.5)
# Hide image names; keep index ticks sparse for readability
plt.xticks([], [])
plt.xlabel("Images (index)")
plt.ylabel("Hallucination (1 - ANLS)")
plt.title("Hallucination by image (interlocked methods)")
plt.grid(axis='y', linestyle='--', alpha=0.3)
# Add box with per-method mean
text2 = "\n".join([f"{m}: {float(combo_df[combo_df['method']==m]['hallucination_score'].mean()):.3f}" for m in methods])
plt.gca().text(0.99, 0.01, text2, transform=plt.gca().transAxes,
fontsize=9, va='bottom', ha='right',
bbox=dict(boxstyle='round', facecolor='white', alpha=0.8, edgecolor='gray'))
plt.legend(loc='upper right', ncol=min(3, len(methods)))
plt.tight_layout()
group_line_png = combined_dir / "hallucination_interlocked_by_image.png"
plt.savefig(group_line_png, dpi=160)
plt.close()
print(f"Combined CSV: {combined_csv}")
print(f"Saved: {bar_png}")
print(f"Saved: {heatmap_png}")
print(f"Saved: {line_png}")
print(f"Saved: {group_line_png}")
if any_error:
sys.exit(1)
if __name__ == "__main__":
main()

254
scripts/pipeline_compare.py Normal file
View File

@@ -0,0 +1,254 @@
#!/usr/bin/env python3
"""
Compare hallucination across three pipelines over five preprocessing methods:
1) Raw: all images
2) DeQA-filtered: keep images with DeQA score >= threshold (default 2.6)
3) Human-filtered: keep images labeled High in CSV labels
Inputs:
- One or more per_sample_eval.json files (or per_image_anls.csv already generated)
- DeQA score file (txt): lines like "3.9 - image (9)_0.png"
- Human labels CSV with columns: filename,label where label in {High,Low}
Outputs:
- Combined means CSV: method vs mean hallucination for each pipeline
- Line chart (3 lines): hallucination mean per method across the three pipelines
"""
from __future__ import annotations
import argparse
import csv
import json
import re
from pathlib import Path
from typing import Dict, List, Tuple, Optional
import pandas as pd
import matplotlib.pyplot as plt
def canonical_key(name: str) -> str:
"""Map various filenames to a canonical key used by per_sample_eval 'image' field.
Examples:
- "image (9)_0.png" -> "image (9)"
- "image (22)" -> "image (22)"
- "foo/bar/image (15)_3.jpg" -> "image (15)"
- other names -> stem without extension
"""
if not name:
return name
# Keep only basename
base = Path(name).name
# Try pattern image (N)
m = re.search(r"(image \(\d+\))", base, flags=re.IGNORECASE)
if m:
return m.group(1)
# Fallback: remove extension
return Path(base).stem
def read_deqa_scores(txt_path: Path) -> Dict[str, float]:
scores: Dict[str, float] = {}
with txt_path.open("r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
# Accept formats: "3.9 - filename" or "filename,3.9" etc.
m = re.match(r"\s*([0-9]+(?:\.[0-9]+)?)\s*[-,:]?\s*(.+)$", line)
if m:
score = float(m.group(1))
filename = m.group(2)
else:
parts = re.split(r"[,\t]", line)
if len(parts) >= 2:
try:
score = float(parts[1])
filename = parts[0]
except Exception:
continue
else:
continue
key = canonical_key(filename)
scores[key] = score
return scores
def read_human_labels(csv_path: Path) -> Dict[str, str]:
labels: Dict[str, str] = {}
with csv_path.open("r", encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
filename = (row.get("filename") or row.get("file") or "").strip()
label = (row.get("label") or row.get("Label") or "").strip()
if not filename:
continue
key = canonical_key(filename)
if label:
labels[key] = label
return labels
def levenshtein_distance(a: str, b: str) -> int:
if a == b:
return 0
if len(a) == 0:
return len(b)
if len(b) == 0:
return len(a)
previous_row = list(range(len(b) + 1))
for i, ca in enumerate(a, start=1):
current_row = [i]
for j, cb in enumerate(b, start=1):
insertions = previous_row[j] + 1
deletions = current_row[j - 1] + 1
substitutions = previous_row[j - 1] + (0 if ca == cb else 1)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row
return previous_row[-1]
def normalized_similarity(pred: str, gt: str) -> float:
pred = pred or ""
gt = gt or ""
max_len = max(len(pred), len(gt))
if max_len == 0:
return 1.0
dist = levenshtein_distance(pred, gt)
sim = 1.0 - (dist / max_len)
if sim < 0.0:
return 0.0
if sim > 1.0:
return 1.0
return sim
def compute_anls_for_record(record: Dict) -> tuple[float, int]:
fields = record.get("fields") or []
if not isinstance(fields, list) or len(fields) == 0:
return 0.0, 0
sims: List[float] = []
for f in fields:
pred = str(f.get("pred", ""))
gt = str(f.get("gt", ""))
sims.append(normalized_similarity(pred, gt))
anls = float(sum(sims) / len(sims)) if sims else 0.0
return anls, len(sims)
def load_per_image_anls(input_json: Path) -> pd.DataFrame:
# Prefer existing per_image_anls.csv, otherwise compute quickly
per_image_csv = input_json.parent / "per_image_anls.csv"
if per_image_csv.exists():
df = pd.read_csv(per_image_csv)
return df
# Fallback: compute minimal ANLS like in the other script
with input_json.open("r", encoding="utf-8") as f:
data = json.load(f)
rows = []
for rec in data:
anls, num_fields = compute_anls_for_record(rec)
rows.append({
"image": rec.get("image"),
"anls": anls,
"hallucination_score": 1.0 - anls,
"num_fields": int(num_fields),
})
return pd.DataFrame(rows)
def main() -> None:
p = argparse.ArgumentParser(description="Compare hallucination across raw/DeQA/Human pipelines over methods")
p.add_argument("inputs", nargs="+", help="per_sample_eval.json files for each method")
p.add_argument("--deqa_txt", required=True, help="Path to DeQA scores txt (e.g., cni.txt)")
p.add_argument("--human_csv", required=True, help="Path to human labels CSV")
p.add_argument("--deqa_threshold", type=float, default=2.6, help="DeQA threshold (>=)")
args = p.parse_args()
# Load filters
deqa_scores = read_deqa_scores(Path(args.deqa_txt))
human_labels = read_human_labels(Path(args.human_csv))
# Aggregate per method
method_to_df: Dict[str, pd.DataFrame] = {}
for ip in args.inputs:
path = Path(ip)
df = load_per_image_anls(path)
df["method"] = path.parent.name
df["image_key"] = df["image"].apply(canonical_key)
method_to_df[path.parent.name] = df
# Compute means per pipeline (fair comparison: set excluded images to hallucination=0)
records = []
for method, df in method_to_df.items():
raw_mean = float(df["hallucination_score"].mean()) if len(df) else float("nan")
# DeQA filter: mark DeQA < threshold as hallucination=0, keep all images
df_deqa = df.copy()
mask_deqa = df_deqa["image_key"].map(lambda k: deqa_scores.get(k, None))
# Set hallucination=0 for images with DeQA < threshold (or missing DeQA)
df_deqa.loc[mask_deqa.isna() | (mask_deqa < args.deqa_threshold), "hallucination_score"] = 0.0
deqa_mean = float(df_deqa["hallucination_score"].mean()) if len(df_deqa) else float("nan")
# Human filter: mark Low labels as hallucination=0, keep all images
df_human = df.copy()
mask_human = df_human["image_key"].map(lambda k: human_labels.get(k, "").lower())
# Set hallucination=0 for images labeled Low (or missing label)
df_human.loc[mask_human != "high", "hallucination_score"] = 0.0
human_mean = float(df_human["hallucination_score"].mean()) if len(df_human) else float("nan")
records.append({
"method": method,
"raw_mean": raw_mean,
"deqa_mean": deqa_mean,
"human_mean": human_mean,
"raw_count": int(len(df)),
"deqa_count": int(len(df_deqa)), # Now equal to raw_count
"human_count": int(len(df_human)), # Now equal to raw_count
})
outdir = Path(args.inputs[0]).parent.parent / "combined_anls" / "pipeline"
outdir.mkdir(parents=True, exist_ok=True)
out_csv = outdir / "pipeline_means.csv"
means_df = pd.DataFrame(records).sort_values("method")
means_df.to_csv(out_csv, index=False)
# 3-line comparison plot over methods (narrower with score annotations)
x = range(len(means_df))
plt.figure(figsize=(7, 5))
# Plot lines and add score annotations
raw_vals = means_df["raw_mean"].values
deqa_vals = means_df["deqa_mean"].values
human_vals = means_df["human_mean"].values
plt.plot(x, raw_vals, marker="o", label="Raw", linewidth=2, markersize=6)
plt.plot(x, deqa_vals, marker="s", label=f"DeQA >= {args.deqa_threshold}", linewidth=2, markersize=6)
plt.plot(x, human_vals, marker="^", label="Human High", linewidth=2, markersize=6)
# Annotate each point with its score
for i, (r, d, h) in enumerate(zip(raw_vals, deqa_vals, human_vals)):
plt.annotate(f"{r:.3f}", (i, r), textcoords="offset points", xytext=(0,8), ha='center', fontsize=8)
plt.annotate(f"{d:.3f}", (i, d), textcoords="offset points", xytext=(0,8), ha='center', fontsize=8)
plt.annotate(f"{h:.3f}", (i, h), textcoords="offset points", xytext=(0,8), ha='center', fontsize=8)
plt.xticks(list(x), means_df["method"].tolist(), rotation=25, ha="right")
plt.ylabel("Mean hallucination (1 - ANLS)")
plt.title("Pipeline comparison over preprocessing methods")
plt.grid(axis="y", linestyle="--", alpha=0.3)
plt.legend()
plt.tight_layout()
out_png = outdir / "pipeline_comparison.png"
plt.savefig(out_png, dpi=160)
plt.close()
print(f"Saved: {out_csv}")
print(f"Saved: {out_png}")
if __name__ == "__main__":
main()