First commit OCR_earsing and Synthetics Handwritten Recognition awesome repo
This commit is contained in:
3
.idea/.gitignore
generated
vendored
Normal file
3
.idea/.gitignore
generated
vendored
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
# Default ignored files
|
||||||
|
/shelf/
|
||||||
|
/workspace.xml
|
||||||
105
.idea/inspectionProfiles/Project_Default.xml
generated
Normal file
105
.idea/inspectionProfiles/Project_Default.xml
generated
Normal file
@@ -0,0 +1,105 @@
|
|||||||
|
<component name="InspectionProjectProfileManager">
|
||||||
|
<profile version="1.0">
|
||||||
|
<option name="myName" value="Project Default" />
|
||||||
|
<inspection_tool class="PyCompatibilityInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
||||||
|
<option name="ourVersions">
|
||||||
|
<value>
|
||||||
|
<list size="2">
|
||||||
|
<item index="0" class="java.lang.String" itemvalue="2.7" />
|
||||||
|
<item index="1" class="java.lang.String" itemvalue="3.12" />
|
||||||
|
</list>
|
||||||
|
</value>
|
||||||
|
</option>
|
||||||
|
</inspection_tool>
|
||||||
|
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
||||||
|
<option name="ignoredPackages">
|
||||||
|
<value>
|
||||||
|
<list size="61">
|
||||||
|
<item index="0" class="java.lang.String" itemvalue="tqdm" />
|
||||||
|
<item index="1" class="java.lang.String" itemvalue="scikit-image" />
|
||||||
|
<item index="2" class="java.lang.String" itemvalue="scikit-build" />
|
||||||
|
<item index="3" class="java.lang.String" itemvalue="Shapely" />
|
||||||
|
<item index="4" class="java.lang.String" itemvalue="torch" />
|
||||||
|
<item index="5" class="java.lang.String" itemvalue="torchvision" />
|
||||||
|
<item index="6" class="java.lang.String" itemvalue="fastai" />
|
||||||
|
<item index="7" class="java.lang.String" itemvalue="notebook" />
|
||||||
|
<item index="8" class="java.lang.String" itemvalue="pillow" />
|
||||||
|
<item index="9" class="java.lang.String" itemvalue="numpy" />
|
||||||
|
<item index="10" class="java.lang.String" itemvalue="scipy" />
|
||||||
|
<item index="11" class="java.lang.String" itemvalue="networkx" />
|
||||||
|
<item index="12" class="java.lang.String" itemvalue="scikit-learn" />
|
||||||
|
<item index="13" class="java.lang.String" itemvalue="opencv-python" />
|
||||||
|
<item index="14" class="java.lang.String" itemvalue="sklearn" />
|
||||||
|
<item index="15" class="java.lang.String" itemvalue="mxnet" />
|
||||||
|
<item index="16" class="java.lang.String" itemvalue="setuptools" />
|
||||||
|
<item index="17" class="java.lang.String" itemvalue="requests" />
|
||||||
|
<item index="18" class="java.lang.String" itemvalue="easydict" />
|
||||||
|
<item index="19" class="java.lang.String" itemvalue="albumentations" />
|
||||||
|
<item index="20" class="java.lang.String" itemvalue="prettytable" />
|
||||||
|
<item index="21" class="java.lang.String" itemvalue="onnxruntime" />
|
||||||
|
<item index="22" class="java.lang.String" itemvalue="tensorboard" />
|
||||||
|
<item index="23" class="java.lang.String" itemvalue="imageio" />
|
||||||
|
<item index="24" class="java.lang.String" itemvalue="insightface" />
|
||||||
|
<item index="25" class="java.lang.String" itemvalue="cmake" />
|
||||||
|
<item index="26" class="java.lang.String" itemvalue="matplotlib" />
|
||||||
|
<item index="27" class="java.lang.String" itemvalue="onnx" />
|
||||||
|
<item index="28" class="java.lang.String" itemvalue="pygraphviz" />
|
||||||
|
<item index="29" class="java.lang.String" itemvalue="timm" />
|
||||||
|
<item index="30" class="java.lang.String" itemvalue="pytorch-ignite" />
|
||||||
|
<item index="31" class="java.lang.String" itemvalue="click" />
|
||||||
|
<item index="32" class="java.lang.String" itemvalue="tnptyping" />
|
||||||
|
<item index="33" class="java.lang.String" itemvalue="opencv-python-headless" />
|
||||||
|
<item index="34" class="java.lang.String" itemvalue="pytorch-lightning" />
|
||||||
|
<item index="35" class="java.lang.String" itemvalue="sconf" />
|
||||||
|
<item index="36" class="java.lang.String" itemvalue="nltk" />
|
||||||
|
<item index="37" class="java.lang.String" itemvalue="zss" />
|
||||||
|
<item index="38" class="java.lang.String" itemvalue="yt_dlp" />
|
||||||
|
<item index="39" class="java.lang.String" itemvalue="ultralytics" />
|
||||||
|
<item index="40" class="java.lang.String" itemvalue="lapx" />
|
||||||
|
<item index="41" class="java.lang.String" itemvalue="transformers" />
|
||||||
|
<item index="42" class="java.lang.String" itemvalue="accelerate" />
|
||||||
|
<item index="43" class="java.lang.String" itemvalue="gdown" />
|
||||||
|
<item index="44" class="java.lang.String" itemvalue="llava-torch" />
|
||||||
|
<item index="45" class="java.lang.String" itemvalue="bitsandbytes" />
|
||||||
|
<item index="46" class="java.lang.String" itemvalue="protobuf" />
|
||||||
|
<item index="47" class="java.lang.String" itemvalue="openai" />
|
||||||
|
<item index="48" class="java.lang.String" itemvalue="sse_starlette" />
|
||||||
|
<item index="49" class="java.lang.String" itemvalue="gradio" />
|
||||||
|
<item index="50" class="java.lang.String" itemvalue="deepspeed" />
|
||||||
|
<item index="51" class="java.lang.String" itemvalue="sentencepiece" />
|
||||||
|
<item index="52" class="java.lang.String" itemvalue="uvicorn" />
|
||||||
|
<item index="53" class="java.lang.String" itemvalue="datasets" />
|
||||||
|
<item index="54" class="java.lang.String" itemvalue="loguru" />
|
||||||
|
<item index="55" class="java.lang.String" itemvalue="jinja2" />
|
||||||
|
<item index="56" class="java.lang.String" itemvalue="xformers" />
|
||||||
|
<item index="57" class="java.lang.String" itemvalue="mimetype" />
|
||||||
|
<item index="58" class="java.lang.String" itemvalue="flash-attn" />
|
||||||
|
<item index="59" class="java.lang.String" itemvalue="einops" />
|
||||||
|
<item index="60" class="java.lang.String" itemvalue="Pillow" />
|
||||||
|
</list>
|
||||||
|
</value>
|
||||||
|
</option>
|
||||||
|
</inspection_tool>
|
||||||
|
<inspection_tool class="PyPep8Inspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
|
||||||
|
<option name="ignoredErrors">
|
||||||
|
<list>
|
||||||
|
<option value="E501" />
|
||||||
|
<option value="E401" />
|
||||||
|
</list>
|
||||||
|
</option>
|
||||||
|
</inspection_tool>
|
||||||
|
<inspection_tool class="PyPep8NamingInspection" enabled="false" level="WEAK WARNING" enabled_by_default="false" />
|
||||||
|
<inspection_tool class="PyRedeclarationInspection" enabled="false" level="WARNING" enabled_by_default="false" />
|
||||||
|
<inspection_tool class="PyTypeCheckerInspection" enabled="false" level="WARNING" enabled_by_default="false" />
|
||||||
|
<inspection_tool class="PyUnresolvedReferencesInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
||||||
|
<option name="ignoredIdentifiers">
|
||||||
|
<list>
|
||||||
|
<option value="notes.quantization.test.*" />
|
||||||
|
</list>
|
||||||
|
</option>
|
||||||
|
</inspection_tool>
|
||||||
|
<inspection_tool class="ShellCheck" enabled="true" level="ERROR" enabled_by_default="true">
|
||||||
|
<shellcheck_settings value="SC2034" />
|
||||||
|
</inspection_tool>
|
||||||
|
</profile>
|
||||||
|
</component>
|
||||||
6
.idea/inspectionProfiles/profiles_settings.xml
generated
Normal file
6
.idea/inspectionProfiles/profiles_settings.xml
generated
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
<component name="InspectionProjectProfileManager">
|
||||||
|
<settings>
|
||||||
|
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||||
|
<version value="1.0" />
|
||||||
|
</settings>
|
||||||
|
</component>
|
||||||
7
.idea/misc.xml
generated
Normal file
7
.idea/misc.xml
generated
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<project version="4">
|
||||||
|
<component name="Black">
|
||||||
|
<option name="sdkName" value="RAG" />
|
||||||
|
</component>
|
||||||
|
<component name="ProjectRootManager" version="2" project-jdk-name="RAG" project-jdk-type="Python SDK" />
|
||||||
|
</project>
|
||||||
8
.idea/modules.xml
generated
Normal file
8
.idea/modules.xml
generated
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<project version="4">
|
||||||
|
<component name="ProjectModuleManager">
|
||||||
|
<modules>
|
||||||
|
<module fileurl="file://$PROJECT_DIR$/.idea/synthetics_handwritten_OCR.iml" filepath="$PROJECT_DIR$/.idea/synthetics_handwritten_OCR.iml" />
|
||||||
|
</modules>
|
||||||
|
</component>
|
||||||
|
</project>
|
||||||
12
.idea/synthetics_handwritten_OCR.iml
generated
Normal file
12
.idea/synthetics_handwritten_OCR.iml
generated
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<module type="PYTHON_MODULE" version="4">
|
||||||
|
<component name="NewModuleRootManager">
|
||||||
|
<content url="file://$MODULE_DIR$" />
|
||||||
|
<orderEntry type="jdk" jdkName="RAG" jdkType="Python SDK" />
|
||||||
|
<orderEntry type="sourceFolder" forTests="false" />
|
||||||
|
</component>
|
||||||
|
<component name="PyDocumentationSettings">
|
||||||
|
<option name="format" value="PLAIN" />
|
||||||
|
<option name="myDocStringFormat" value="Plain" />
|
||||||
|
</component>
|
||||||
|
</module>
|
||||||
6
.idea/vcs.xml
generated
Normal file
6
.idea/vcs.xml
generated
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<project version="4">
|
||||||
|
<component name="VcsDirectoryMappings">
|
||||||
|
<mapping directory="" vcs="Git" />
|
||||||
|
</component>
|
||||||
|
</project>
|
||||||
20
OCR_earsing/README.md
Normal file
20
OCR_earsing/README.md
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
# OCR Earsing
|
||||||
|
This repository contains the code for erasing the OCR text from the images. Code is written based on
|
||||||
|
[OCR_SAM]("https://github.com/yeungchenwa/OCR-SAM")
|
||||||
|
|
||||||
|
Have 2 method to earse the text from the image:
|
||||||
|
- Traditional method: using the bounding box of the text to earse the text, and use function OpenCV to earse the text.
|
||||||
|
- Deep learning method: using the bounding box of the text, segment the text based on [SAM]("https://github.com/facebookresearch/segment-anything") (Segment Anything) and use diffuse model to earse the text.
|
||||||
|
|
||||||
|
In my code, I use the deep learning method to earse the text from the image.
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
```shell
|
||||||
|
pip install -r requirements.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
## Run
|
||||||
|
```shell
|
||||||
|
python ocr_eraser.py
|
||||||
|
```
|
||||||
|
|
||||||
0
OCR_earsing/__init__.py
Normal file
0
OCR_earsing/__init__.py
Normal file
0
OCR_earsing/latent_diffusion/__init__.py
Normal file
0
OCR_earsing/latent_diffusion/__init__.py
Normal file
67
OCR_earsing/latent_diffusion/inpainting_big/config.yaml
Normal file
67
OCR_earsing/latent_diffusion/inpainting_big/config.yaml
Normal file
@@ -0,0 +1,67 @@
|
|||||||
|
model:
|
||||||
|
base_learning_rate: 1.0e-06
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||||
|
params:
|
||||||
|
linear_start: 0.0015
|
||||||
|
linear_end: 0.0205
|
||||||
|
log_every_t: 100
|
||||||
|
timesteps: 1000
|
||||||
|
loss_type: l1
|
||||||
|
first_stage_key: image
|
||||||
|
cond_stage_key: masked_image
|
||||||
|
image_size: 64
|
||||||
|
channels: 3
|
||||||
|
concat_mode: true
|
||||||
|
monitor: val/loss
|
||||||
|
scheduler_config:
|
||||||
|
target: ldm.lr_scheduler.LambdaWarmUpCosineScheduler
|
||||||
|
params:
|
||||||
|
verbosity_interval: 0
|
||||||
|
warm_up_steps: 1000
|
||||||
|
max_decay_steps: 50000
|
||||||
|
lr_start: 0.001
|
||||||
|
lr_max: 0.1
|
||||||
|
lr_min: 0.0001
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
image_size: 64
|
||||||
|
in_channels: 7
|
||||||
|
out_channels: 3
|
||||||
|
model_channels: 256
|
||||||
|
attention_resolutions:
|
||||||
|
- 8
|
||||||
|
- 4
|
||||||
|
- 2
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult:
|
||||||
|
- 1
|
||||||
|
- 2
|
||||||
|
- 3
|
||||||
|
- 4
|
||||||
|
num_heads: 8
|
||||||
|
resblock_updown: true
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.VQModelInterface
|
||||||
|
params:
|
||||||
|
embed_dim: 3
|
||||||
|
n_embed: 8192
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ddconfig:
|
||||||
|
attn_type: none
|
||||||
|
double_z: false
|
||||||
|
z_channels: 3
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult:
|
||||||
|
- 1
|
||||||
|
- 2
|
||||||
|
- 4
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: []
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: ldm.modules.losses.contperceptual.DummyLoss
|
||||||
|
cond_stage_config: __is_first_stage__
|
||||||
0
OCR_earsing/latent_diffusion/ldm/__init__.py
Normal file
0
OCR_earsing/latent_diffusion/ldm/__init__.py
Normal file
0
OCR_earsing/latent_diffusion/ldm/models/__init__.py
Normal file
0
OCR_earsing/latent_diffusion/ldm/models/__init__.py
Normal file
443
OCR_earsing/latent_diffusion/ldm/models/autoencoder.py
Normal file
443
OCR_earsing/latent_diffusion/ldm/models/autoencoder.py
Normal file
@@ -0,0 +1,443 @@
|
|||||||
|
import torch
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from contextlib import contextmanager
|
||||||
|
|
||||||
|
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
||||||
|
|
||||||
|
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
||||||
|
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
||||||
|
|
||||||
|
from ldm.util import instantiate_from_config
|
||||||
|
|
||||||
|
|
||||||
|
class VQModel(pl.LightningModule):
|
||||||
|
def __init__(self,
|
||||||
|
ddconfig,
|
||||||
|
lossconfig,
|
||||||
|
n_embed,
|
||||||
|
embed_dim,
|
||||||
|
ckpt_path=None,
|
||||||
|
ignore_keys=[],
|
||||||
|
image_key="image",
|
||||||
|
colorize_nlabels=None,
|
||||||
|
monitor=None,
|
||||||
|
batch_resize_range=None,
|
||||||
|
scheduler_config=None,
|
||||||
|
lr_g_factor=1.0,
|
||||||
|
remap=None,
|
||||||
|
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||||
|
use_ema=False
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
self.n_embed = n_embed
|
||||||
|
self.image_key = image_key
|
||||||
|
self.encoder = Encoder(**ddconfig)
|
||||||
|
self.decoder = Decoder(**ddconfig)
|
||||||
|
self.loss = instantiate_from_config(lossconfig)
|
||||||
|
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
||||||
|
remap=remap,
|
||||||
|
sane_index_shape=sane_index_shape)
|
||||||
|
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
||||||
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
||||||
|
if colorize_nlabels is not None:
|
||||||
|
assert type(colorize_nlabels)==int
|
||||||
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
||||||
|
if monitor is not None:
|
||||||
|
self.monitor = monitor
|
||||||
|
self.batch_resize_range = batch_resize_range
|
||||||
|
if self.batch_resize_range is not None:
|
||||||
|
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
||||||
|
|
||||||
|
self.use_ema = use_ema
|
||||||
|
if self.use_ema:
|
||||||
|
self.model_ema = LitEma(self)
|
||||||
|
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
||||||
|
|
||||||
|
if ckpt_path is not None:
|
||||||
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||||
|
self.scheduler_config = scheduler_config
|
||||||
|
self.lr_g_factor = lr_g_factor
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def ema_scope(self, context=None):
|
||||||
|
if self.use_ema:
|
||||||
|
self.model_ema.store(self.parameters())
|
||||||
|
self.model_ema.copy_to(self)
|
||||||
|
if context is not None:
|
||||||
|
print(f"{context}: Switched to EMA weights")
|
||||||
|
try:
|
||||||
|
yield None
|
||||||
|
finally:
|
||||||
|
if self.use_ema:
|
||||||
|
self.model_ema.restore(self.parameters())
|
||||||
|
if context is not None:
|
||||||
|
print(f"{context}: Restored training weights")
|
||||||
|
|
||||||
|
def init_from_ckpt(self, path, ignore_keys=list()):
|
||||||
|
sd = torch.load(path, map_location="cpu")["state_dict"]
|
||||||
|
keys = list(sd.keys())
|
||||||
|
for k in keys:
|
||||||
|
for ik in ignore_keys:
|
||||||
|
if k.startswith(ik):
|
||||||
|
print("Deleting key {} from state_dict.".format(k))
|
||||||
|
del sd[k]
|
||||||
|
missing, unexpected = self.load_state_dict(sd, strict=False)
|
||||||
|
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
||||||
|
if len(missing) > 0:
|
||||||
|
print(f"Missing Keys: {missing}")
|
||||||
|
print(f"Unexpected Keys: {unexpected}")
|
||||||
|
|
||||||
|
def on_train_batch_end(self, *args, **kwargs):
|
||||||
|
if self.use_ema:
|
||||||
|
self.model_ema(self)
|
||||||
|
|
||||||
|
def encode(self, x):
|
||||||
|
h = self.encoder(x)
|
||||||
|
h = self.quant_conv(h)
|
||||||
|
quant, emb_loss, info = self.quantize(h)
|
||||||
|
return quant, emb_loss, info
|
||||||
|
|
||||||
|
def encode_to_prequant(self, x):
|
||||||
|
h = self.encoder(x)
|
||||||
|
h = self.quant_conv(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
def decode(self, quant):
|
||||||
|
quant = self.post_quant_conv(quant)
|
||||||
|
dec = self.decoder(quant)
|
||||||
|
return dec
|
||||||
|
|
||||||
|
def decode_code(self, code_b):
|
||||||
|
quant_b = self.quantize.embed_code(code_b)
|
||||||
|
dec = self.decode(quant_b)
|
||||||
|
return dec
|
||||||
|
|
||||||
|
def forward(self, input, return_pred_indices=False):
|
||||||
|
quant, diff, (_,_,ind) = self.encode(input)
|
||||||
|
dec = self.decode(quant)
|
||||||
|
if return_pred_indices:
|
||||||
|
return dec, diff, ind
|
||||||
|
return dec, diff
|
||||||
|
|
||||||
|
def get_input(self, batch, k):
|
||||||
|
x = batch[k]
|
||||||
|
if len(x.shape) == 3:
|
||||||
|
x = x[..., None]
|
||||||
|
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
||||||
|
if self.batch_resize_range is not None:
|
||||||
|
lower_size = self.batch_resize_range[0]
|
||||||
|
upper_size = self.batch_resize_range[1]
|
||||||
|
if self.global_step <= 4:
|
||||||
|
# do the first few batches with max size to avoid later oom
|
||||||
|
new_resize = upper_size
|
||||||
|
else:
|
||||||
|
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
||||||
|
if new_resize != x.shape[2]:
|
||||||
|
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
||||||
|
x = x.detach()
|
||||||
|
return x
|
||||||
|
|
||||||
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
||||||
|
# https://github.com/pytorch/pytorch/issues/37142
|
||||||
|
# try not to fool the heuristics
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
xrec, qloss, ind = self(x, return_pred_indices=True)
|
||||||
|
|
||||||
|
if optimizer_idx == 0:
|
||||||
|
# autoencode
|
||||||
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="train",
|
||||||
|
predicted_indices=ind)
|
||||||
|
|
||||||
|
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||||
|
return aeloss
|
||||||
|
|
||||||
|
if optimizer_idx == 1:
|
||||||
|
# discriminator
|
||||||
|
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="train")
|
||||||
|
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||||
|
return discloss
|
||||||
|
|
||||||
|
def validation_step(self, batch, batch_idx):
|
||||||
|
log_dict = self._validation_step(batch, batch_idx)
|
||||||
|
with self.ema_scope():
|
||||||
|
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
||||||
|
return log_dict
|
||||||
|
|
||||||
|
def _validation_step(self, batch, batch_idx, suffix=""):
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
xrec, qloss, ind = self(x, return_pred_indices=True)
|
||||||
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
||||||
|
self.global_step,
|
||||||
|
last_layer=self.get_last_layer(),
|
||||||
|
split="val"+suffix,
|
||||||
|
predicted_indices=ind
|
||||||
|
)
|
||||||
|
|
||||||
|
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
||||||
|
self.global_step,
|
||||||
|
last_layer=self.get_last_layer(),
|
||||||
|
split="val"+suffix,
|
||||||
|
predicted_indices=ind
|
||||||
|
)
|
||||||
|
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
||||||
|
self.log(f"val{suffix}/rec_loss", rec_loss,
|
||||||
|
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
||||||
|
self.log(f"val{suffix}/aeloss", aeloss,
|
||||||
|
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
||||||
|
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
||||||
|
del log_dict_ae[f"val{suffix}/rec_loss"]
|
||||||
|
self.log_dict(log_dict_ae)
|
||||||
|
self.log_dict(log_dict_disc)
|
||||||
|
return self.log_dict
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
lr_d = self.learning_rate
|
||||||
|
lr_g = self.lr_g_factor*self.learning_rate
|
||||||
|
print("lr_d", lr_d)
|
||||||
|
print("lr_g", lr_g)
|
||||||
|
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
||||||
|
list(self.decoder.parameters())+
|
||||||
|
list(self.quantize.parameters())+
|
||||||
|
list(self.quant_conv.parameters())+
|
||||||
|
list(self.post_quant_conv.parameters()),
|
||||||
|
lr=lr_g, betas=(0.5, 0.9))
|
||||||
|
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
||||||
|
lr=lr_d, betas=(0.5, 0.9))
|
||||||
|
|
||||||
|
if self.scheduler_config is not None:
|
||||||
|
scheduler = instantiate_from_config(self.scheduler_config)
|
||||||
|
|
||||||
|
print("Setting up LambdaLR scheduler...")
|
||||||
|
scheduler = [
|
||||||
|
{
|
||||||
|
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
||||||
|
'interval': 'step',
|
||||||
|
'frequency': 1
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
||||||
|
'interval': 'step',
|
||||||
|
'frequency': 1
|
||||||
|
},
|
||||||
|
]
|
||||||
|
return [opt_ae, opt_disc], scheduler
|
||||||
|
return [opt_ae, opt_disc], []
|
||||||
|
|
||||||
|
def get_last_layer(self):
|
||||||
|
return self.decoder.conv_out.weight
|
||||||
|
|
||||||
|
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
||||||
|
log = dict()
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
x = x.to(self.device)
|
||||||
|
if only_inputs:
|
||||||
|
log["inputs"] = x
|
||||||
|
return log
|
||||||
|
xrec, _ = self(x)
|
||||||
|
if x.shape[1] > 3:
|
||||||
|
# colorize with random projection
|
||||||
|
assert xrec.shape[1] > 3
|
||||||
|
x = self.to_rgb(x)
|
||||||
|
xrec = self.to_rgb(xrec)
|
||||||
|
log["inputs"] = x
|
||||||
|
log["reconstructions"] = xrec
|
||||||
|
if plot_ema:
|
||||||
|
with self.ema_scope():
|
||||||
|
xrec_ema, _ = self(x)
|
||||||
|
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
||||||
|
log["reconstructions_ema"] = xrec_ema
|
||||||
|
return log
|
||||||
|
|
||||||
|
def to_rgb(self, x):
|
||||||
|
assert self.image_key == "segmentation"
|
||||||
|
if not hasattr(self, "colorize"):
|
||||||
|
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
||||||
|
x = F.conv2d(x, weight=self.colorize)
|
||||||
|
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class VQModelInterface(VQModel):
|
||||||
|
def __init__(self, embed_dim, *args, **kwargs):
|
||||||
|
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
|
||||||
|
def encode(self, x):
|
||||||
|
h = self.encoder(x)
|
||||||
|
h = self.quant_conv(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
def decode(self, h, force_not_quantize=False):
|
||||||
|
# also go through quantization layer
|
||||||
|
if not force_not_quantize:
|
||||||
|
quant, emb_loss, info = self.quantize(h)
|
||||||
|
else:
|
||||||
|
quant = h
|
||||||
|
quant = self.post_quant_conv(quant)
|
||||||
|
dec = self.decoder(quant)
|
||||||
|
return dec
|
||||||
|
|
||||||
|
|
||||||
|
class AutoencoderKL(pl.LightningModule):
|
||||||
|
def __init__(self,
|
||||||
|
ddconfig,
|
||||||
|
lossconfig,
|
||||||
|
embed_dim,
|
||||||
|
ckpt_path=None,
|
||||||
|
ignore_keys=[],
|
||||||
|
image_key="image",
|
||||||
|
colorize_nlabels=None,
|
||||||
|
monitor=None,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.image_key = image_key
|
||||||
|
self.encoder = Encoder(**ddconfig)
|
||||||
|
self.decoder = Decoder(**ddconfig)
|
||||||
|
self.loss = instantiate_from_config(lossconfig)
|
||||||
|
assert ddconfig["double_z"]
|
||||||
|
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
||||||
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
if colorize_nlabels is not None:
|
||||||
|
assert type(colorize_nlabels)==int
|
||||||
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
||||||
|
if monitor is not None:
|
||||||
|
self.monitor = monitor
|
||||||
|
if ckpt_path is not None:
|
||||||
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||||
|
|
||||||
|
def init_from_ckpt(self, path, ignore_keys=list()):
|
||||||
|
sd = torch.load(path, map_location="cpu")["state_dict"]
|
||||||
|
keys = list(sd.keys())
|
||||||
|
for k in keys:
|
||||||
|
for ik in ignore_keys:
|
||||||
|
if k.startswith(ik):
|
||||||
|
print("Deleting key {} from state_dict.".format(k))
|
||||||
|
del sd[k]
|
||||||
|
self.load_state_dict(sd, strict=False)
|
||||||
|
print(f"Restored from {path}")
|
||||||
|
|
||||||
|
def encode(self, x):
|
||||||
|
h = self.encoder(x)
|
||||||
|
moments = self.quant_conv(h)
|
||||||
|
posterior = DiagonalGaussianDistribution(moments)
|
||||||
|
return posterior
|
||||||
|
|
||||||
|
def decode(self, z):
|
||||||
|
z = self.post_quant_conv(z)
|
||||||
|
dec = self.decoder(z)
|
||||||
|
return dec
|
||||||
|
|
||||||
|
def forward(self, input, sample_posterior=True):
|
||||||
|
posterior = self.encode(input)
|
||||||
|
if sample_posterior:
|
||||||
|
z = posterior.sample()
|
||||||
|
else:
|
||||||
|
z = posterior.mode()
|
||||||
|
dec = self.decode(z)
|
||||||
|
return dec, posterior
|
||||||
|
|
||||||
|
def get_input(self, batch, k):
|
||||||
|
x = batch[k]
|
||||||
|
if len(x.shape) == 3:
|
||||||
|
x = x[..., None]
|
||||||
|
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
||||||
|
return x
|
||||||
|
|
||||||
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
||||||
|
inputs = self.get_input(batch, self.image_key)
|
||||||
|
reconstructions, posterior = self(inputs)
|
||||||
|
|
||||||
|
if optimizer_idx == 0:
|
||||||
|
# train encoder+decoder+logvar
|
||||||
|
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="train")
|
||||||
|
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||||
|
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
||||||
|
return aeloss
|
||||||
|
|
||||||
|
if optimizer_idx == 1:
|
||||||
|
# train the discriminator
|
||||||
|
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="train")
|
||||||
|
|
||||||
|
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||||
|
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
||||||
|
return discloss
|
||||||
|
|
||||||
|
def validation_step(self, batch, batch_idx):
|
||||||
|
inputs = self.get_input(batch, self.image_key)
|
||||||
|
reconstructions, posterior = self(inputs)
|
||||||
|
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="val")
|
||||||
|
|
||||||
|
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="val")
|
||||||
|
|
||||||
|
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
||||||
|
self.log_dict(log_dict_ae)
|
||||||
|
self.log_dict(log_dict_disc)
|
||||||
|
return self.log_dict
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
lr = self.learning_rate
|
||||||
|
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
||||||
|
list(self.decoder.parameters())+
|
||||||
|
list(self.quant_conv.parameters())+
|
||||||
|
list(self.post_quant_conv.parameters()),
|
||||||
|
lr=lr, betas=(0.5, 0.9))
|
||||||
|
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
||||||
|
lr=lr, betas=(0.5, 0.9))
|
||||||
|
return [opt_ae, opt_disc], []
|
||||||
|
|
||||||
|
def get_last_layer(self):
|
||||||
|
return self.decoder.conv_out.weight
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def log_images(self, batch, only_inputs=False, **kwargs):
|
||||||
|
log = dict()
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
x = x.to(self.device)
|
||||||
|
if not only_inputs:
|
||||||
|
xrec, posterior = self(x)
|
||||||
|
if x.shape[1] > 3:
|
||||||
|
# colorize with random projection
|
||||||
|
assert xrec.shape[1] > 3
|
||||||
|
x = self.to_rgb(x)
|
||||||
|
xrec = self.to_rgb(xrec)
|
||||||
|
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
||||||
|
log["reconstructions"] = xrec
|
||||||
|
log["inputs"] = x
|
||||||
|
return log
|
||||||
|
|
||||||
|
def to_rgb(self, x):
|
||||||
|
assert self.image_key == "segmentation"
|
||||||
|
if not hasattr(self, "colorize"):
|
||||||
|
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
||||||
|
x = F.conv2d(x, weight=self.colorize)
|
||||||
|
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class IdentityFirstStage(torch.nn.Module):
|
||||||
|
def __init__(self, *args, vq_interface=False, **kwargs):
|
||||||
|
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def encode(self, x, *args, **kwargs):
|
||||||
|
return x
|
||||||
|
|
||||||
|
def decode(self, x, *args, **kwargs):
|
||||||
|
return x
|
||||||
|
|
||||||
|
def quantize(self, x, *args, **kwargs):
|
||||||
|
if self.vq_interface:
|
||||||
|
return x, None, [None, None, None]
|
||||||
|
return x
|
||||||
|
|
||||||
|
def forward(self, x, *args, **kwargs):
|
||||||
|
return x
|
||||||
203
OCR_earsing/latent_diffusion/ldm/models/diffusion/ddim.py
Normal file
203
OCR_earsing/latent_diffusion/ldm/models/diffusion/ddim.py
Normal file
@@ -0,0 +1,203 @@
|
|||||||
|
"""SAMPLING ONLY."""
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from tqdm import tqdm
|
||||||
|
from functools import partial
|
||||||
|
|
||||||
|
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
||||||
|
|
||||||
|
|
||||||
|
class DDIMSampler(object):
|
||||||
|
def __init__(self, model, schedule="linear", **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.model = model
|
||||||
|
self.ddpm_num_timesteps = model.num_timesteps
|
||||||
|
self.schedule = schedule
|
||||||
|
|
||||||
|
def register_buffer(self, name, attr):
|
||||||
|
if type(attr) == torch.Tensor:
|
||||||
|
if attr.device != torch.device("cuda"):
|
||||||
|
attr = attr.to(torch.device("cuda"))
|
||||||
|
setattr(self, name, attr)
|
||||||
|
|
||||||
|
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
||||||
|
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
||||||
|
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
||||||
|
alphas_cumprod = self.model.alphas_cumprod
|
||||||
|
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
||||||
|
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
||||||
|
|
||||||
|
self.register_buffer('betas', to_torch(self.model.betas))
|
||||||
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||||
|
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
||||||
|
|
||||||
|
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||||
|
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
||||||
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
||||||
|
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
||||||
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
||||||
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
||||||
|
|
||||||
|
# ddim sampling parameters
|
||||||
|
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
||||||
|
ddim_timesteps=self.ddim_timesteps,
|
||||||
|
eta=ddim_eta,verbose=verbose)
|
||||||
|
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||||||
|
self.register_buffer('ddim_alphas', ddim_alphas)
|
||||||
|
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||||||
|
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
||||||
|
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||||
|
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
||||||
|
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
||||||
|
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def sample(self,
|
||||||
|
S,
|
||||||
|
batch_size,
|
||||||
|
shape,
|
||||||
|
conditioning=None,
|
||||||
|
callback=None,
|
||||||
|
normals_sequence=None,
|
||||||
|
img_callback=None,
|
||||||
|
quantize_x0=False,
|
||||||
|
eta=0.,
|
||||||
|
mask=None,
|
||||||
|
x0=None,
|
||||||
|
temperature=1.,
|
||||||
|
noise_dropout=0.,
|
||||||
|
score_corrector=None,
|
||||||
|
corrector_kwargs=None,
|
||||||
|
verbose=True,
|
||||||
|
x_T=None,
|
||||||
|
log_every_t=100,
|
||||||
|
unconditional_guidance_scale=1.,
|
||||||
|
unconditional_conditioning=None,
|
||||||
|
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
if conditioning is not None:
|
||||||
|
if isinstance(conditioning, dict):
|
||||||
|
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||||||
|
if cbs != batch_size:
|
||||||
|
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||||
|
else:
|
||||||
|
if conditioning.shape[0] != batch_size:
|
||||||
|
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||||
|
|
||||||
|
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||||
|
# sampling
|
||||||
|
C, H, W = shape
|
||||||
|
size = (batch_size, C, H, W)
|
||||||
|
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
||||||
|
|
||||||
|
samples, intermediates = self.ddim_sampling(conditioning, size,
|
||||||
|
callback=callback,
|
||||||
|
img_callback=img_callback,
|
||||||
|
quantize_denoised=quantize_x0,
|
||||||
|
mask=mask, x0=x0,
|
||||||
|
ddim_use_original_steps=False,
|
||||||
|
noise_dropout=noise_dropout,
|
||||||
|
temperature=temperature,
|
||||||
|
score_corrector=score_corrector,
|
||||||
|
corrector_kwargs=corrector_kwargs,
|
||||||
|
x_T=x_T,
|
||||||
|
log_every_t=log_every_t,
|
||||||
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||||
|
unconditional_conditioning=unconditional_conditioning,
|
||||||
|
)
|
||||||
|
return samples, intermediates
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def ddim_sampling(self, cond, shape,
|
||||||
|
x_T=None, ddim_use_original_steps=False,
|
||||||
|
callback=None, timesteps=None, quantize_denoised=False,
|
||||||
|
mask=None, x0=None, img_callback=None, log_every_t=100,
|
||||||
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||||
|
unconditional_guidance_scale=1., unconditional_conditioning=None,):
|
||||||
|
device = self.model.betas.device
|
||||||
|
b = shape[0]
|
||||||
|
if x_T is None:
|
||||||
|
img = torch.randn(shape, device=device)
|
||||||
|
else:
|
||||||
|
img = x_T
|
||||||
|
|
||||||
|
if timesteps is None:
|
||||||
|
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
||||||
|
elif timesteps is not None and not ddim_use_original_steps:
|
||||||
|
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
||||||
|
timesteps = self.ddim_timesteps[:subset_end]
|
||||||
|
|
||||||
|
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||||||
|
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
||||||
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||||
|
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||||
|
|
||||||
|
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
||||||
|
|
||||||
|
for i, step in enumerate(iterator):
|
||||||
|
index = total_steps - i - 1
|
||||||
|
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
assert x0 is not None
|
||||||
|
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
||||||
|
img = img_orig * mask + (1. - mask) * img
|
||||||
|
|
||||||
|
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
||||||
|
quantize_denoised=quantize_denoised, temperature=temperature,
|
||||||
|
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
||||||
|
corrector_kwargs=corrector_kwargs,
|
||||||
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||||
|
unconditional_conditioning=unconditional_conditioning)
|
||||||
|
img, pred_x0 = outs
|
||||||
|
if callback: callback(i)
|
||||||
|
if img_callback: img_callback(pred_x0, i)
|
||||||
|
|
||||||
|
if index % log_every_t == 0 or index == total_steps - 1:
|
||||||
|
intermediates['x_inter'].append(img)
|
||||||
|
intermediates['pred_x0'].append(pred_x0)
|
||||||
|
|
||||||
|
return img, intermediates
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||||
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||||
|
unconditional_guidance_scale=1., unconditional_conditioning=None):
|
||||||
|
b, *_, device = *x.shape, x.device
|
||||||
|
|
||||||
|
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||||
|
e_t = self.model.apply_model(x, t, c)
|
||||||
|
else:
|
||||||
|
x_in = torch.cat([x] * 2)
|
||||||
|
t_in = torch.cat([t] * 2)
|
||||||
|
c_in = torch.cat([unconditional_conditioning, c])
|
||||||
|
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||||
|
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||||
|
|
||||||
|
if score_corrector is not None:
|
||||||
|
assert self.model.parameterization == "eps"
|
||||||
|
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||||
|
|
||||||
|
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||||
|
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||||
|
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||||
|
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||||
|
# select parameters corresponding to the currently considered timestep
|
||||||
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||||
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||||
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||||
|
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
||||||
|
|
||||||
|
# current prediction for x_0
|
||||||
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||||
|
if quantize_denoised:
|
||||||
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||||
|
# direction pointing to x_t
|
||||||
|
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
||||||
|
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||||
|
if noise_dropout > 0.:
|
||||||
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||||
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||||
|
return x_prev, pred_x0
|
||||||
1445
OCR_earsing/latent_diffusion/ldm/models/diffusion/ddpm.py
Normal file
1445
OCR_earsing/latent_diffusion/ldm/models/diffusion/ddpm.py
Normal file
File diff suppressed because it is too large
Load Diff
261
OCR_earsing/latent_diffusion/ldm/modules/attention.py
Normal file
261
OCR_earsing/latent_diffusion/ldm/modules/attention.py
Normal file
@@ -0,0 +1,261 @@
|
|||||||
|
from inspect import isfunction
|
||||||
|
import math
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch import nn, einsum
|
||||||
|
from einops import rearrange, repeat
|
||||||
|
|
||||||
|
from ldm.modules.diffusionmodules.util import checkpoint
|
||||||
|
|
||||||
|
|
||||||
|
def exists(val):
|
||||||
|
return val is not None
|
||||||
|
|
||||||
|
|
||||||
|
def uniq(arr):
|
||||||
|
return{el: True for el in arr}.keys()
|
||||||
|
|
||||||
|
|
||||||
|
def default(val, d):
|
||||||
|
if exists(val):
|
||||||
|
return val
|
||||||
|
return d() if isfunction(d) else d
|
||||||
|
|
||||||
|
|
||||||
|
def max_neg_value(t):
|
||||||
|
return -torch.finfo(t.dtype).max
|
||||||
|
|
||||||
|
|
||||||
|
def init_(tensor):
|
||||||
|
dim = tensor.shape[-1]
|
||||||
|
std = 1 / math.sqrt(dim)
|
||||||
|
tensor.uniform_(-std, std)
|
||||||
|
return tensor
|
||||||
|
|
||||||
|
|
||||||
|
# feedforward
|
||||||
|
class GEGLU(nn.Module):
|
||||||
|
def __init__(self, dim_in, dim_out):
|
||||||
|
super().__init__()
|
||||||
|
self.proj = nn.Linear(dim_in, dim_out * 2)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||||
|
return x * F.gelu(gate)
|
||||||
|
|
||||||
|
|
||||||
|
class FeedForward(nn.Module):
|
||||||
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
||||||
|
super().__init__()
|
||||||
|
inner_dim = int(dim * mult)
|
||||||
|
dim_out = default(dim_out, dim)
|
||||||
|
project_in = nn.Sequential(
|
||||||
|
nn.Linear(dim, inner_dim),
|
||||||
|
nn.GELU()
|
||||||
|
) if not glu else GEGLU(dim, inner_dim)
|
||||||
|
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
project_in,
|
||||||
|
nn.Dropout(dropout),
|
||||||
|
nn.Linear(inner_dim, dim_out)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.net(x)
|
||||||
|
|
||||||
|
|
||||||
|
def zero_module(module):
|
||||||
|
"""
|
||||||
|
Zero out the parameters of a module and return it.
|
||||||
|
"""
|
||||||
|
for p in module.parameters():
|
||||||
|
p.detach().zero_()
|
||||||
|
return module
|
||||||
|
|
||||||
|
|
||||||
|
def Normalize(in_channels):
|
||||||
|
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||||
|
|
||||||
|
|
||||||
|
class LinearAttention(nn.Module):
|
||||||
|
def __init__(self, dim, heads=4, dim_head=32):
|
||||||
|
super().__init__()
|
||||||
|
self.heads = heads
|
||||||
|
hidden_dim = dim_head * heads
|
||||||
|
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
||||||
|
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
b, c, h, w = x.shape
|
||||||
|
qkv = self.to_qkv(x)
|
||||||
|
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
||||||
|
k = k.softmax(dim=-1)
|
||||||
|
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
||||||
|
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
||||||
|
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
||||||
|
return self.to_out(out)
|
||||||
|
|
||||||
|
|
||||||
|
class SpatialSelfAttention(nn.Module):
|
||||||
|
def __init__(self, in_channels):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
|
||||||
|
self.norm = Normalize(in_channels)
|
||||||
|
self.q = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
self.k = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
self.v = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
self.proj_out = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
h_ = x
|
||||||
|
h_ = self.norm(h_)
|
||||||
|
q = self.q(h_)
|
||||||
|
k = self.k(h_)
|
||||||
|
v = self.v(h_)
|
||||||
|
|
||||||
|
# compute attention
|
||||||
|
b,c,h,w = q.shape
|
||||||
|
q = rearrange(q, 'b c h w -> b (h w) c')
|
||||||
|
k = rearrange(k, 'b c h w -> b c (h w)')
|
||||||
|
w_ = torch.einsum('bij,bjk->bik', q, k)
|
||||||
|
|
||||||
|
w_ = w_ * (int(c)**(-0.5))
|
||||||
|
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||||
|
|
||||||
|
# attend to values
|
||||||
|
v = rearrange(v, 'b c h w -> b c (h w)')
|
||||||
|
w_ = rearrange(w_, 'b i j -> b j i')
|
||||||
|
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
||||||
|
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
||||||
|
h_ = self.proj_out(h_)
|
||||||
|
|
||||||
|
return x+h_
|
||||||
|
|
||||||
|
|
||||||
|
class CrossAttention(nn.Module):
|
||||||
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
||||||
|
super().__init__()
|
||||||
|
inner_dim = dim_head * heads
|
||||||
|
context_dim = default(context_dim, query_dim)
|
||||||
|
|
||||||
|
self.scale = dim_head ** -0.5
|
||||||
|
self.heads = heads
|
||||||
|
|
||||||
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||||||
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
||||||
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
||||||
|
|
||||||
|
self.to_out = nn.Sequential(
|
||||||
|
nn.Linear(inner_dim, query_dim),
|
||||||
|
nn.Dropout(dropout)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x, context=None, mask=None):
|
||||||
|
h = self.heads
|
||||||
|
|
||||||
|
q = self.to_q(x)
|
||||||
|
context = default(context, x)
|
||||||
|
k = self.to_k(context)
|
||||||
|
v = self.to_v(context)
|
||||||
|
|
||||||
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||||
|
|
||||||
|
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||||
|
|
||||||
|
if exists(mask):
|
||||||
|
mask = rearrange(mask, 'b ... -> b (...)')
|
||||||
|
max_neg_value = -torch.finfo(sim.dtype).max
|
||||||
|
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
||||||
|
sim.masked_fill_(~mask, max_neg_value)
|
||||||
|
|
||||||
|
# attention, what we cannot get enough of
|
||||||
|
attn = sim.softmax(dim=-1)
|
||||||
|
|
||||||
|
out = einsum('b i j, b j d -> b i d', attn, v)
|
||||||
|
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
||||||
|
return self.to_out(out)
|
||||||
|
|
||||||
|
|
||||||
|
class BasicTransformerBlock(nn.Module):
|
||||||
|
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
|
||||||
|
super().__init__()
|
||||||
|
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
|
||||||
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
||||||
|
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
||||||
|
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
||||||
|
self.norm1 = nn.LayerNorm(dim)
|
||||||
|
self.norm2 = nn.LayerNorm(dim)
|
||||||
|
self.norm3 = nn.LayerNorm(dim)
|
||||||
|
self.checkpoint = checkpoint
|
||||||
|
|
||||||
|
def forward(self, x, context=None):
|
||||||
|
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
||||||
|
|
||||||
|
def _forward(self, x, context=None):
|
||||||
|
x = self.attn1(self.norm1(x)) + x
|
||||||
|
x = self.attn2(self.norm2(x), context=context) + x
|
||||||
|
x = self.ff(self.norm3(x)) + x
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class SpatialTransformer(nn.Module):
|
||||||
|
"""
|
||||||
|
Transformer block for image-like data.
|
||||||
|
First, project the input (aka embedding)
|
||||||
|
and reshape to b, t, d.
|
||||||
|
Then apply standard transformer action.
|
||||||
|
Finally, reshape to image
|
||||||
|
"""
|
||||||
|
def __init__(self, in_channels, n_heads, d_head,
|
||||||
|
depth=1, dropout=0., context_dim=None):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
inner_dim = n_heads * d_head
|
||||||
|
self.norm = Normalize(in_channels)
|
||||||
|
|
||||||
|
self.proj_in = nn.Conv2d(in_channels,
|
||||||
|
inner_dim,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
|
||||||
|
self.transformer_blocks = nn.ModuleList(
|
||||||
|
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
|
||||||
|
for d in range(depth)]
|
||||||
|
)
|
||||||
|
|
||||||
|
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0))
|
||||||
|
|
||||||
|
def forward(self, x, context=None):
|
||||||
|
# note: if no context is given, cross-attention defaults to self-attention
|
||||||
|
b, c, h, w = x.shape
|
||||||
|
x_in = x
|
||||||
|
x = self.norm(x)
|
||||||
|
x = self.proj_in(x)
|
||||||
|
x = rearrange(x, 'b c h w -> b (h w) c')
|
||||||
|
for block in self.transformer_blocks:
|
||||||
|
x = block(x, context=context)
|
||||||
|
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
||||||
|
x = self.proj_out(x)
|
||||||
|
return x + x_in
|
||||||
@@ -0,0 +1,835 @@
|
|||||||
|
# pytorch_diffusion + derived encoder decoder
|
||||||
|
import math
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
from einops import rearrange
|
||||||
|
|
||||||
|
from ldm.util import instantiate_from_config
|
||||||
|
from ldm.modules.attention import LinearAttention
|
||||||
|
|
||||||
|
|
||||||
|
def get_timestep_embedding(timesteps, embedding_dim):
|
||||||
|
"""
|
||||||
|
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
||||||
|
From Fairseq.
|
||||||
|
Build sinusoidal embeddings.
|
||||||
|
This matches the implementation in tensor2tensor, but differs slightly
|
||||||
|
from the description in Section 3.5 of "Attention Is All You Need".
|
||||||
|
"""
|
||||||
|
assert len(timesteps.shape) == 1
|
||||||
|
|
||||||
|
half_dim = embedding_dim // 2
|
||||||
|
emb = math.log(10000) / (half_dim - 1)
|
||||||
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
||||||
|
emb = emb.to(device=timesteps.device)
|
||||||
|
emb = timesteps.float()[:, None] * emb[None, :]
|
||||||
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
||||||
|
if embedding_dim % 2 == 1: # zero pad
|
||||||
|
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
||||||
|
return emb
|
||||||
|
|
||||||
|
|
||||||
|
def nonlinearity(x):
|
||||||
|
# swish
|
||||||
|
return x*torch.sigmoid(x)
|
||||||
|
|
||||||
|
|
||||||
|
def Normalize(in_channels, num_groups=32):
|
||||||
|
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
||||||
|
|
||||||
|
|
||||||
|
class Upsample(nn.Module):
|
||||||
|
def __init__(self, in_channels, with_conv):
|
||||||
|
super().__init__()
|
||||||
|
self.with_conv = with_conv
|
||||||
|
if self.with_conv:
|
||||||
|
self.conv = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||||
|
if self.with_conv:
|
||||||
|
x = self.conv(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Downsample(nn.Module):
|
||||||
|
def __init__(self, in_channels, with_conv):
|
||||||
|
super().__init__()
|
||||||
|
self.with_conv = with_conv
|
||||||
|
if self.with_conv:
|
||||||
|
# no asymmetric padding in torch conv, must do it ourselves
|
||||||
|
self.conv = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=2,
|
||||||
|
padding=0)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
if self.with_conv:
|
||||||
|
pad = (0,1,0,1)
|
||||||
|
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
||||||
|
x = self.conv(x)
|
||||||
|
else:
|
||||||
|
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class ResnetBlock(nn.Module):
|
||||||
|
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
||||||
|
dropout, temb_channels=512):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
out_channels = in_channels if out_channels is None else out_channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.use_conv_shortcut = conv_shortcut
|
||||||
|
|
||||||
|
self.norm1 = Normalize(in_channels)
|
||||||
|
self.conv1 = torch.nn.Conv2d(in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
if temb_channels > 0:
|
||||||
|
self.temb_proj = torch.nn.Linear(temb_channels,
|
||||||
|
out_channels)
|
||||||
|
self.norm2 = Normalize(out_channels)
|
||||||
|
self.dropout = torch.nn.Dropout(dropout)
|
||||||
|
self.conv2 = torch.nn.Conv2d(out_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
if self.in_channels != self.out_channels:
|
||||||
|
if self.use_conv_shortcut:
|
||||||
|
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
else:
|
||||||
|
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
|
||||||
|
def forward(self, x, temb):
|
||||||
|
h = x
|
||||||
|
h = self.norm1(h)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
h = self.conv1(h)
|
||||||
|
|
||||||
|
if temb is not None:
|
||||||
|
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
||||||
|
|
||||||
|
h = self.norm2(h)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
h = self.dropout(h)
|
||||||
|
h = self.conv2(h)
|
||||||
|
|
||||||
|
if self.in_channels != self.out_channels:
|
||||||
|
if self.use_conv_shortcut:
|
||||||
|
x = self.conv_shortcut(x)
|
||||||
|
else:
|
||||||
|
x = self.nin_shortcut(x)
|
||||||
|
|
||||||
|
return x+h
|
||||||
|
|
||||||
|
|
||||||
|
class LinAttnBlock(LinearAttention):
|
||||||
|
"""to match AttnBlock usage"""
|
||||||
|
def __init__(self, in_channels):
|
||||||
|
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
||||||
|
|
||||||
|
|
||||||
|
class AttnBlock(nn.Module):
|
||||||
|
def __init__(self, in_channels):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
|
||||||
|
self.norm = Normalize(in_channels)
|
||||||
|
self.q = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
self.k = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
self.v = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
self.proj_out = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
h_ = x
|
||||||
|
h_ = self.norm(h_)
|
||||||
|
q = self.q(h_)
|
||||||
|
k = self.k(h_)
|
||||||
|
v = self.v(h_)
|
||||||
|
|
||||||
|
# compute attention
|
||||||
|
b,c,h,w = q.shape
|
||||||
|
q = q.reshape(b,c,h*w)
|
||||||
|
q = q.permute(0,2,1) # b,hw,c
|
||||||
|
k = k.reshape(b,c,h*w) # b,c,hw
|
||||||
|
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
||||||
|
w_ = w_ * (int(c)**(-0.5))
|
||||||
|
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||||
|
|
||||||
|
# attend to values
|
||||||
|
v = v.reshape(b,c,h*w)
|
||||||
|
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
||||||
|
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
||||||
|
h_ = h_.reshape(b,c,h,w)
|
||||||
|
|
||||||
|
h_ = self.proj_out(h_)
|
||||||
|
|
||||||
|
return x+h_
|
||||||
|
|
||||||
|
|
||||||
|
def make_attn(in_channels, attn_type="vanilla"):
|
||||||
|
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
||||||
|
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
||||||
|
if attn_type == "vanilla":
|
||||||
|
return AttnBlock(in_channels)
|
||||||
|
elif attn_type == "none":
|
||||||
|
return nn.Identity(in_channels)
|
||||||
|
else:
|
||||||
|
return LinAttnBlock(in_channels)
|
||||||
|
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||||
|
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||||
|
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
||||||
|
super().__init__()
|
||||||
|
if use_linear_attn: attn_type = "linear"
|
||||||
|
self.ch = ch
|
||||||
|
self.temb_ch = self.ch*4
|
||||||
|
self.num_resolutions = len(ch_mult)
|
||||||
|
self.num_res_blocks = num_res_blocks
|
||||||
|
self.resolution = resolution
|
||||||
|
self.in_channels = in_channels
|
||||||
|
|
||||||
|
self.use_timestep = use_timestep
|
||||||
|
if self.use_timestep:
|
||||||
|
# timestep embedding
|
||||||
|
self.temb = nn.Module()
|
||||||
|
self.temb.dense = nn.ModuleList([
|
||||||
|
torch.nn.Linear(self.ch,
|
||||||
|
self.temb_ch),
|
||||||
|
torch.nn.Linear(self.temb_ch,
|
||||||
|
self.temb_ch),
|
||||||
|
])
|
||||||
|
|
||||||
|
# downsampling
|
||||||
|
self.conv_in = torch.nn.Conv2d(in_channels,
|
||||||
|
self.ch,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
curr_res = resolution
|
||||||
|
in_ch_mult = (1,)+tuple(ch_mult)
|
||||||
|
self.down = nn.ModuleList()
|
||||||
|
for i_level in range(self.num_resolutions):
|
||||||
|
block = nn.ModuleList()
|
||||||
|
attn = nn.ModuleList()
|
||||||
|
block_in = ch*in_ch_mult[i_level]
|
||||||
|
block_out = ch*ch_mult[i_level]
|
||||||
|
for i_block in range(self.num_res_blocks):
|
||||||
|
block.append(ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_out,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout))
|
||||||
|
block_in = block_out
|
||||||
|
if curr_res in attn_resolutions:
|
||||||
|
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||||
|
down = nn.Module()
|
||||||
|
down.block = block
|
||||||
|
down.attn = attn
|
||||||
|
if i_level != self.num_resolutions-1:
|
||||||
|
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||||
|
curr_res = curr_res // 2
|
||||||
|
self.down.append(down)
|
||||||
|
|
||||||
|
# middle
|
||||||
|
self.mid = nn.Module()
|
||||||
|
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_in,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout)
|
||||||
|
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||||
|
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_in,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout)
|
||||||
|
|
||||||
|
# upsampling
|
||||||
|
self.up = nn.ModuleList()
|
||||||
|
for i_level in reversed(range(self.num_resolutions)):
|
||||||
|
block = nn.ModuleList()
|
||||||
|
attn = nn.ModuleList()
|
||||||
|
block_out = ch*ch_mult[i_level]
|
||||||
|
skip_in = ch*ch_mult[i_level]
|
||||||
|
for i_block in range(self.num_res_blocks+1):
|
||||||
|
if i_block == self.num_res_blocks:
|
||||||
|
skip_in = ch*in_ch_mult[i_level]
|
||||||
|
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
||||||
|
out_channels=block_out,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout))
|
||||||
|
block_in = block_out
|
||||||
|
if curr_res in attn_resolutions:
|
||||||
|
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||||
|
up = nn.Module()
|
||||||
|
up.block = block
|
||||||
|
up.attn = attn
|
||||||
|
if i_level != 0:
|
||||||
|
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||||
|
curr_res = curr_res * 2
|
||||||
|
self.up.insert(0, up) # prepend to get consistent order
|
||||||
|
|
||||||
|
# end
|
||||||
|
self.norm_out = Normalize(block_in)
|
||||||
|
self.conv_out = torch.nn.Conv2d(block_in,
|
||||||
|
out_ch,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
def forward(self, x, t=None, context=None):
|
||||||
|
#assert x.shape[2] == x.shape[3] == self.resolution
|
||||||
|
if context is not None:
|
||||||
|
# assume aligned context, cat along channel axis
|
||||||
|
x = torch.cat((x, context), dim=1)
|
||||||
|
if self.use_timestep:
|
||||||
|
# timestep embedding
|
||||||
|
assert t is not None
|
||||||
|
temb = get_timestep_embedding(t, self.ch)
|
||||||
|
temb = self.temb.dense[0](temb)
|
||||||
|
temb = nonlinearity(temb)
|
||||||
|
temb = self.temb.dense[1](temb)
|
||||||
|
else:
|
||||||
|
temb = None
|
||||||
|
|
||||||
|
# downsampling
|
||||||
|
hs = [self.conv_in(x)]
|
||||||
|
for i_level in range(self.num_resolutions):
|
||||||
|
for i_block in range(self.num_res_blocks):
|
||||||
|
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||||
|
if len(self.down[i_level].attn) > 0:
|
||||||
|
h = self.down[i_level].attn[i_block](h)
|
||||||
|
hs.append(h)
|
||||||
|
if i_level != self.num_resolutions-1:
|
||||||
|
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||||
|
|
||||||
|
# middle
|
||||||
|
h = hs[-1]
|
||||||
|
h = self.mid.block_1(h, temb)
|
||||||
|
h = self.mid.attn_1(h)
|
||||||
|
h = self.mid.block_2(h, temb)
|
||||||
|
|
||||||
|
# upsampling
|
||||||
|
for i_level in reversed(range(self.num_resolutions)):
|
||||||
|
for i_block in range(self.num_res_blocks+1):
|
||||||
|
h = self.up[i_level].block[i_block](
|
||||||
|
torch.cat([h, hs.pop()], dim=1), temb)
|
||||||
|
if len(self.up[i_level].attn) > 0:
|
||||||
|
h = self.up[i_level].attn[i_block](h)
|
||||||
|
if i_level != 0:
|
||||||
|
h = self.up[i_level].upsample(h)
|
||||||
|
|
||||||
|
# end
|
||||||
|
h = self.norm_out(h)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
h = self.conv_out(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
def get_last_layer(self):
|
||||||
|
return self.conv_out.weight
|
||||||
|
|
||||||
|
|
||||||
|
class Encoder(nn.Module):
|
||||||
|
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||||
|
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||||
|
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
||||||
|
**ignore_kwargs):
|
||||||
|
super().__init__()
|
||||||
|
if use_linear_attn: attn_type = "linear"
|
||||||
|
self.ch = ch
|
||||||
|
self.temb_ch = 0
|
||||||
|
self.num_resolutions = len(ch_mult)
|
||||||
|
self.num_res_blocks = num_res_blocks
|
||||||
|
self.resolution = resolution
|
||||||
|
self.in_channels = in_channels
|
||||||
|
|
||||||
|
# downsampling
|
||||||
|
self.conv_in = torch.nn.Conv2d(in_channels,
|
||||||
|
self.ch,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
curr_res = resolution
|
||||||
|
in_ch_mult = (1,)+tuple(ch_mult)
|
||||||
|
self.in_ch_mult = in_ch_mult
|
||||||
|
self.down = nn.ModuleList()
|
||||||
|
for i_level in range(self.num_resolutions):
|
||||||
|
block = nn.ModuleList()
|
||||||
|
attn = nn.ModuleList()
|
||||||
|
block_in = ch*in_ch_mult[i_level]
|
||||||
|
block_out = ch*ch_mult[i_level]
|
||||||
|
for i_block in range(self.num_res_blocks):
|
||||||
|
block.append(ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_out,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout))
|
||||||
|
block_in = block_out
|
||||||
|
if curr_res in attn_resolutions:
|
||||||
|
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||||
|
down = nn.Module()
|
||||||
|
down.block = block
|
||||||
|
down.attn = attn
|
||||||
|
if i_level != self.num_resolutions-1:
|
||||||
|
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||||
|
curr_res = curr_res // 2
|
||||||
|
self.down.append(down)
|
||||||
|
|
||||||
|
# middle
|
||||||
|
self.mid = nn.Module()
|
||||||
|
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_in,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout)
|
||||||
|
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||||
|
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_in,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout)
|
||||||
|
|
||||||
|
# end
|
||||||
|
self.norm_out = Normalize(block_in)
|
||||||
|
self.conv_out = torch.nn.Conv2d(block_in,
|
||||||
|
2*z_channels if double_z else z_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# timestep embedding
|
||||||
|
temb = None
|
||||||
|
|
||||||
|
# downsampling
|
||||||
|
hs = [self.conv_in(x)]
|
||||||
|
for i_level in range(self.num_resolutions):
|
||||||
|
for i_block in range(self.num_res_blocks):
|
||||||
|
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||||
|
if len(self.down[i_level].attn) > 0:
|
||||||
|
h = self.down[i_level].attn[i_block](h)
|
||||||
|
hs.append(h)
|
||||||
|
if i_level != self.num_resolutions-1:
|
||||||
|
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||||
|
|
||||||
|
# middle
|
||||||
|
h = hs[-1]
|
||||||
|
h = self.mid.block_1(h, temb)
|
||||||
|
h = self.mid.attn_1(h)
|
||||||
|
h = self.mid.block_2(h, temb)
|
||||||
|
|
||||||
|
# end
|
||||||
|
h = self.norm_out(h)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
h = self.conv_out(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(nn.Module):
|
||||||
|
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||||
|
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||||
|
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
||||||
|
attn_type="vanilla", **ignorekwargs):
|
||||||
|
super().__init__()
|
||||||
|
if use_linear_attn: attn_type = "linear"
|
||||||
|
self.ch = ch
|
||||||
|
self.temb_ch = 0
|
||||||
|
self.num_resolutions = len(ch_mult)
|
||||||
|
self.num_res_blocks = num_res_blocks
|
||||||
|
self.resolution = resolution
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.give_pre_end = give_pre_end
|
||||||
|
self.tanh_out = tanh_out
|
||||||
|
|
||||||
|
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||||
|
in_ch_mult = (1,)+tuple(ch_mult)
|
||||||
|
block_in = ch*ch_mult[self.num_resolutions-1]
|
||||||
|
curr_res = resolution // 2**(self.num_resolutions-1)
|
||||||
|
self.z_shape = (1,z_channels,curr_res,curr_res)
|
||||||
|
print("Working with z of shape {} = {} dimensions.".format(
|
||||||
|
self.z_shape, np.prod(self.z_shape)))
|
||||||
|
|
||||||
|
# z to block_in
|
||||||
|
self.conv_in = torch.nn.Conv2d(z_channels,
|
||||||
|
block_in,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
# middle
|
||||||
|
self.mid = nn.Module()
|
||||||
|
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_in,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout)
|
||||||
|
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||||
|
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_in,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout)
|
||||||
|
|
||||||
|
# upsampling
|
||||||
|
self.up = nn.ModuleList()
|
||||||
|
for i_level in reversed(range(self.num_resolutions)):
|
||||||
|
block = nn.ModuleList()
|
||||||
|
attn = nn.ModuleList()
|
||||||
|
block_out = ch*ch_mult[i_level]
|
||||||
|
for i_block in range(self.num_res_blocks+1):
|
||||||
|
block.append(ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_out,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout))
|
||||||
|
block_in = block_out
|
||||||
|
if curr_res in attn_resolutions:
|
||||||
|
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||||
|
up = nn.Module()
|
||||||
|
up.block = block
|
||||||
|
up.attn = attn
|
||||||
|
if i_level != 0:
|
||||||
|
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||||
|
curr_res = curr_res * 2
|
||||||
|
self.up.insert(0, up) # prepend to get consistent order
|
||||||
|
|
||||||
|
# end
|
||||||
|
self.norm_out = Normalize(block_in)
|
||||||
|
self.conv_out = torch.nn.Conv2d(block_in,
|
||||||
|
out_ch,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
def forward(self, z):
|
||||||
|
#assert z.shape[1:] == self.z_shape[1:]
|
||||||
|
self.last_z_shape = z.shape
|
||||||
|
|
||||||
|
# timestep embedding
|
||||||
|
temb = None
|
||||||
|
|
||||||
|
# z to block_in
|
||||||
|
h = self.conv_in(z)
|
||||||
|
|
||||||
|
# middle
|
||||||
|
h = self.mid.block_1(h, temb)
|
||||||
|
h = self.mid.attn_1(h)
|
||||||
|
h = self.mid.block_2(h, temb)
|
||||||
|
|
||||||
|
# upsampling
|
||||||
|
for i_level in reversed(range(self.num_resolutions)):
|
||||||
|
for i_block in range(self.num_res_blocks+1):
|
||||||
|
h = self.up[i_level].block[i_block](h, temb)
|
||||||
|
if len(self.up[i_level].attn) > 0:
|
||||||
|
h = self.up[i_level].attn[i_block](h)
|
||||||
|
if i_level != 0:
|
||||||
|
h = self.up[i_level].upsample(h)
|
||||||
|
|
||||||
|
# end
|
||||||
|
if self.give_pre_end:
|
||||||
|
return h
|
||||||
|
|
||||||
|
h = self.norm_out(h)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
h = self.conv_out(h)
|
||||||
|
if self.tanh_out:
|
||||||
|
h = torch.tanh(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
class SimpleDecoder(nn.Module):
|
||||||
|
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
||||||
|
ResnetBlock(in_channels=in_channels,
|
||||||
|
out_channels=2 * in_channels,
|
||||||
|
temb_channels=0, dropout=0.0),
|
||||||
|
ResnetBlock(in_channels=2 * in_channels,
|
||||||
|
out_channels=4 * in_channels,
|
||||||
|
temb_channels=0, dropout=0.0),
|
||||||
|
ResnetBlock(in_channels=4 * in_channels,
|
||||||
|
out_channels=2 * in_channels,
|
||||||
|
temb_channels=0, dropout=0.0),
|
||||||
|
nn.Conv2d(2*in_channels, in_channels, 1),
|
||||||
|
Upsample(in_channels, with_conv=True)])
|
||||||
|
# end
|
||||||
|
self.norm_out = Normalize(in_channels)
|
||||||
|
self.conv_out = torch.nn.Conv2d(in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
for i, layer in enumerate(self.model):
|
||||||
|
if i in [1,2,3]:
|
||||||
|
x = layer(x, None)
|
||||||
|
else:
|
||||||
|
x = layer(x)
|
||||||
|
|
||||||
|
h = self.norm_out(x)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
x = self.conv_out(h)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class UpsampleDecoder(nn.Module):
|
||||||
|
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
||||||
|
ch_mult=(2,2), dropout=0.0):
|
||||||
|
super().__init__()
|
||||||
|
# upsampling
|
||||||
|
self.temb_ch = 0
|
||||||
|
self.num_resolutions = len(ch_mult)
|
||||||
|
self.num_res_blocks = num_res_blocks
|
||||||
|
block_in = in_channels
|
||||||
|
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
||||||
|
self.res_blocks = nn.ModuleList()
|
||||||
|
self.upsample_blocks = nn.ModuleList()
|
||||||
|
for i_level in range(self.num_resolutions):
|
||||||
|
res_block = []
|
||||||
|
block_out = ch * ch_mult[i_level]
|
||||||
|
for i_block in range(self.num_res_blocks + 1):
|
||||||
|
res_block.append(ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_out,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout))
|
||||||
|
block_in = block_out
|
||||||
|
self.res_blocks.append(nn.ModuleList(res_block))
|
||||||
|
if i_level != self.num_resolutions - 1:
|
||||||
|
self.upsample_blocks.append(Upsample(block_in, True))
|
||||||
|
curr_res = curr_res * 2
|
||||||
|
|
||||||
|
# end
|
||||||
|
self.norm_out = Normalize(block_in)
|
||||||
|
self.conv_out = torch.nn.Conv2d(block_in,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# upsampling
|
||||||
|
h = x
|
||||||
|
for k, i_level in enumerate(range(self.num_resolutions)):
|
||||||
|
for i_block in range(self.num_res_blocks + 1):
|
||||||
|
h = self.res_blocks[i_level][i_block](h, None)
|
||||||
|
if i_level != self.num_resolutions - 1:
|
||||||
|
h = self.upsample_blocks[k](h)
|
||||||
|
h = self.norm_out(h)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
h = self.conv_out(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
class LatentRescaler(nn.Module):
|
||||||
|
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
||||||
|
super().__init__()
|
||||||
|
# residual block, interpolate, residual block
|
||||||
|
self.factor = factor
|
||||||
|
self.conv_in = nn.Conv2d(in_channels,
|
||||||
|
mid_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
||||||
|
out_channels=mid_channels,
|
||||||
|
temb_channels=0,
|
||||||
|
dropout=0.0) for _ in range(depth)])
|
||||||
|
self.attn = AttnBlock(mid_channels)
|
||||||
|
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
||||||
|
out_channels=mid_channels,
|
||||||
|
temb_channels=0,
|
||||||
|
dropout=0.0) for _ in range(depth)])
|
||||||
|
|
||||||
|
self.conv_out = nn.Conv2d(mid_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.conv_in(x)
|
||||||
|
for block in self.res_block1:
|
||||||
|
x = block(x, None)
|
||||||
|
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
||||||
|
x = self.attn(x)
|
||||||
|
for block in self.res_block2:
|
||||||
|
x = block(x, None)
|
||||||
|
x = self.conv_out(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class MergedRescaleEncoder(nn.Module):
|
||||||
|
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
||||||
|
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
||||||
|
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
||||||
|
super().__init__()
|
||||||
|
intermediate_chn = ch * ch_mult[-1]
|
||||||
|
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
||||||
|
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
||||||
|
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
||||||
|
out_ch=None)
|
||||||
|
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
||||||
|
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.encoder(x)
|
||||||
|
x = self.rescaler(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class MergedRescaleDecoder(nn.Module):
|
||||||
|
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
||||||
|
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
||||||
|
super().__init__()
|
||||||
|
tmp_chn = z_channels*ch_mult[-1]
|
||||||
|
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
||||||
|
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
||||||
|
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
||||||
|
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
||||||
|
out_channels=tmp_chn, depth=rescale_module_depth)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.rescaler(x)
|
||||||
|
x = self.decoder(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Upsampler(nn.Module):
|
||||||
|
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
||||||
|
super().__init__()
|
||||||
|
assert out_size >= in_size
|
||||||
|
num_blocks = int(np.log2(out_size//in_size))+1
|
||||||
|
factor_up = 1.+ (out_size % in_size)
|
||||||
|
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
||||||
|
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
||||||
|
out_channels=in_channels)
|
||||||
|
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
||||||
|
attn_resolutions=[], in_channels=None, ch=in_channels,
|
||||||
|
ch_mult=[ch_mult for _ in range(num_blocks)])
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.rescaler(x)
|
||||||
|
x = self.decoder(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Resize(nn.Module):
|
||||||
|
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
||||||
|
super().__init__()
|
||||||
|
self.with_conv = learned
|
||||||
|
self.mode = mode
|
||||||
|
if self.with_conv:
|
||||||
|
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
||||||
|
raise NotImplementedError()
|
||||||
|
assert in_channels is not None
|
||||||
|
# no asymmetric padding in torch conv, must do it ourselves
|
||||||
|
self.conv = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=4,
|
||||||
|
stride=2,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
def forward(self, x, scale_factor=1.0):
|
||||||
|
if scale_factor==1.0:
|
||||||
|
return x
|
||||||
|
else:
|
||||||
|
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
||||||
|
return x
|
||||||
|
|
||||||
|
class FirstStagePostProcessor(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, ch_mult:list, in_channels,
|
||||||
|
pretrained_model:nn.Module=None,
|
||||||
|
reshape=False,
|
||||||
|
n_channels=None,
|
||||||
|
dropout=0.,
|
||||||
|
pretrained_config=None):
|
||||||
|
super().__init__()
|
||||||
|
if pretrained_config is None:
|
||||||
|
assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
||||||
|
self.pretrained_model = pretrained_model
|
||||||
|
else:
|
||||||
|
assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
||||||
|
self.instantiate_pretrained(pretrained_config)
|
||||||
|
|
||||||
|
self.do_reshape = reshape
|
||||||
|
|
||||||
|
if n_channels is None:
|
||||||
|
n_channels = self.pretrained_model.encoder.ch
|
||||||
|
|
||||||
|
self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
|
||||||
|
self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
|
||||||
|
stride=1,padding=1)
|
||||||
|
|
||||||
|
blocks = []
|
||||||
|
downs = []
|
||||||
|
ch_in = n_channels
|
||||||
|
for m in ch_mult:
|
||||||
|
blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
|
||||||
|
ch_in = m * n_channels
|
||||||
|
downs.append(Downsample(ch_in, with_conv=False))
|
||||||
|
|
||||||
|
self.model = nn.ModuleList(blocks)
|
||||||
|
self.downsampler = nn.ModuleList(downs)
|
||||||
|
|
||||||
|
|
||||||
|
def instantiate_pretrained(self, config):
|
||||||
|
model = instantiate_from_config(config)
|
||||||
|
self.pretrained_model = model.eval()
|
||||||
|
# self.pretrained_model.train = False
|
||||||
|
for param in self.pretrained_model.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def encode_with_pretrained(self,x):
|
||||||
|
c = self.pretrained_model.encode(x)
|
||||||
|
if isinstance(c, DiagonalGaussianDistribution):
|
||||||
|
c = c.mode()
|
||||||
|
return c
|
||||||
|
|
||||||
|
def forward(self,x):
|
||||||
|
z_fs = self.encode_with_pretrained(x)
|
||||||
|
z = self.proj_norm(z_fs)
|
||||||
|
z = self.proj(z)
|
||||||
|
z = nonlinearity(z)
|
||||||
|
|
||||||
|
for submodel, downmodel in zip(self.model,self.downsampler):
|
||||||
|
z = submodel(z,temb=None)
|
||||||
|
z = downmodel(z)
|
||||||
|
|
||||||
|
if self.do_reshape:
|
||||||
|
z = rearrange(z,'b c h w -> b (h w) c')
|
||||||
|
return z
|
||||||
|
|
||||||
@@ -0,0 +1,961 @@
|
|||||||
|
from abc import abstractmethod
|
||||||
|
from functools import partial
|
||||||
|
import math
|
||||||
|
from typing import Iterable
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch as th
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from ldm.modules.diffusionmodules.util import (
|
||||||
|
checkpoint,
|
||||||
|
conv_nd,
|
||||||
|
linear,
|
||||||
|
avg_pool_nd,
|
||||||
|
zero_module,
|
||||||
|
normalization,
|
||||||
|
timestep_embedding,
|
||||||
|
)
|
||||||
|
from ldm.modules.attention import SpatialTransformer
|
||||||
|
|
||||||
|
|
||||||
|
# dummy replace
|
||||||
|
def convert_module_to_f16(x):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def convert_module_to_f32(x):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
## go
|
||||||
|
class AttentionPool2d(nn.Module):
|
||||||
|
"""
|
||||||
|
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
spacial_dim: int,
|
||||||
|
embed_dim: int,
|
||||||
|
num_heads_channels: int,
|
||||||
|
output_dim: int = None,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
||||||
|
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
||||||
|
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
||||||
|
self.num_heads = embed_dim // num_heads_channels
|
||||||
|
self.attention = QKVAttention(self.num_heads)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
b, c, *_spatial = x.shape
|
||||||
|
x = x.reshape(b, c, -1) # NC(HW)
|
||||||
|
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
||||||
|
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
||||||
|
x = self.qkv_proj(x)
|
||||||
|
x = self.attention(x)
|
||||||
|
x = self.c_proj(x)
|
||||||
|
return x[:, :, 0]
|
||||||
|
|
||||||
|
|
||||||
|
class TimestepBlock(nn.Module):
|
||||||
|
"""
|
||||||
|
Any module where forward() takes timestep embeddings as a second argument.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def forward(self, x, emb):
|
||||||
|
"""
|
||||||
|
Apply the module to `x` given `emb` timestep embeddings.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||||
|
"""
|
||||||
|
A sequential module that passes timestep embeddings to the children that
|
||||||
|
support it as an extra input.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def forward(self, x, emb, context=None):
|
||||||
|
for layer in self:
|
||||||
|
if isinstance(layer, TimestepBlock):
|
||||||
|
x = layer(x, emb)
|
||||||
|
elif isinstance(layer, SpatialTransformer):
|
||||||
|
x = layer(x, context)
|
||||||
|
else:
|
||||||
|
x = layer(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Upsample(nn.Module):
|
||||||
|
"""
|
||||||
|
An upsampling layer with an optional convolution.
|
||||||
|
:param channels: channels in the inputs and outputs.
|
||||||
|
:param use_conv: a bool determining if a convolution is applied.
|
||||||
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||||
|
upsampling occurs in the inner-two dimensions.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.out_channels = out_channels or channels
|
||||||
|
self.use_conv = use_conv
|
||||||
|
self.dims = dims
|
||||||
|
if use_conv:
|
||||||
|
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
assert x.shape[1] == self.channels
|
||||||
|
if self.dims == 3:
|
||||||
|
x = F.interpolate(
|
||||||
|
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||||
|
if self.use_conv:
|
||||||
|
x = self.conv(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
class TransposedUpsample(nn.Module):
|
||||||
|
'Learned 2x upsampling without padding'
|
||||||
|
def __init__(self, channels, out_channels=None, ks=5):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.out_channels = out_channels or channels
|
||||||
|
|
||||||
|
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
||||||
|
|
||||||
|
def forward(self,x):
|
||||||
|
return self.up(x)
|
||||||
|
|
||||||
|
|
||||||
|
class Downsample(nn.Module):
|
||||||
|
"""
|
||||||
|
A downsampling layer with an optional convolution.
|
||||||
|
:param channels: channels in the inputs and outputs.
|
||||||
|
:param use_conv: a bool determining if a convolution is applied.
|
||||||
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||||
|
downsampling occurs in the inner-two dimensions.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.out_channels = out_channels or channels
|
||||||
|
self.use_conv = use_conv
|
||||||
|
self.dims = dims
|
||||||
|
stride = 2 if dims != 3 else (1, 2, 2)
|
||||||
|
if use_conv:
|
||||||
|
self.op = conv_nd(
|
||||||
|
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert self.channels == self.out_channels
|
||||||
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
assert x.shape[1] == self.channels
|
||||||
|
return self.op(x)
|
||||||
|
|
||||||
|
|
||||||
|
class ResBlock(TimestepBlock):
|
||||||
|
"""
|
||||||
|
A residual block that can optionally change the number of channels.
|
||||||
|
:param channels: the number of input channels.
|
||||||
|
:param emb_channels: the number of timestep embedding channels.
|
||||||
|
:param dropout: the rate of dropout.
|
||||||
|
:param out_channels: if specified, the number of out channels.
|
||||||
|
:param use_conv: if True and out_channels is specified, use a spatial
|
||||||
|
convolution instead of a smaller 1x1 convolution to change the
|
||||||
|
channels in the skip connection.
|
||||||
|
:param dims: determines if the signal is 1D, 2D, or 3D.
|
||||||
|
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
||||||
|
:param up: if True, use this block for upsampling.
|
||||||
|
:param down: if True, use this block for downsampling.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
channels,
|
||||||
|
emb_channels,
|
||||||
|
dropout,
|
||||||
|
out_channels=None,
|
||||||
|
use_conv=False,
|
||||||
|
use_scale_shift_norm=False,
|
||||||
|
dims=2,
|
||||||
|
use_checkpoint=False,
|
||||||
|
up=False,
|
||||||
|
down=False,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.emb_channels = emb_channels
|
||||||
|
self.dropout = dropout
|
||||||
|
self.out_channels = out_channels or channels
|
||||||
|
self.use_conv = use_conv
|
||||||
|
self.use_checkpoint = use_checkpoint
|
||||||
|
self.use_scale_shift_norm = use_scale_shift_norm
|
||||||
|
|
||||||
|
self.in_layers = nn.Sequential(
|
||||||
|
normalization(channels),
|
||||||
|
nn.SiLU(),
|
||||||
|
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.updown = up or down
|
||||||
|
|
||||||
|
if up:
|
||||||
|
self.h_upd = Upsample(channels, False, dims)
|
||||||
|
self.x_upd = Upsample(channels, False, dims)
|
||||||
|
elif down:
|
||||||
|
self.h_upd = Downsample(channels, False, dims)
|
||||||
|
self.x_upd = Downsample(channels, False, dims)
|
||||||
|
else:
|
||||||
|
self.h_upd = self.x_upd = nn.Identity()
|
||||||
|
|
||||||
|
self.emb_layers = nn.Sequential(
|
||||||
|
nn.SiLU(),
|
||||||
|
linear(
|
||||||
|
emb_channels,
|
||||||
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
self.out_layers = nn.Sequential(
|
||||||
|
normalization(self.out_channels),
|
||||||
|
nn.SiLU(),
|
||||||
|
nn.Dropout(p=dropout),
|
||||||
|
zero_module(
|
||||||
|
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.out_channels == channels:
|
||||||
|
self.skip_connection = nn.Identity()
|
||||||
|
elif use_conv:
|
||||||
|
self.skip_connection = conv_nd(
|
||||||
|
dims, channels, self.out_channels, 3, padding=1
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||||
|
|
||||||
|
def forward(self, x, emb):
|
||||||
|
"""
|
||||||
|
Apply the block to a Tensor, conditioned on a timestep embedding.
|
||||||
|
:param x: an [N x C x ...] Tensor of features.
|
||||||
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
||||||
|
:return: an [N x C x ...] Tensor of outputs.
|
||||||
|
"""
|
||||||
|
return checkpoint(
|
||||||
|
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def _forward(self, x, emb):
|
||||||
|
if self.updown:
|
||||||
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||||
|
h = in_rest(x)
|
||||||
|
h = self.h_upd(h)
|
||||||
|
x = self.x_upd(x)
|
||||||
|
h = in_conv(h)
|
||||||
|
else:
|
||||||
|
h = self.in_layers(x)
|
||||||
|
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||||
|
while len(emb_out.shape) < len(h.shape):
|
||||||
|
emb_out = emb_out[..., None]
|
||||||
|
if self.use_scale_shift_norm:
|
||||||
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||||
|
scale, shift = th.chunk(emb_out, 2, dim=1)
|
||||||
|
h = out_norm(h) * (1 + scale) + shift
|
||||||
|
h = out_rest(h)
|
||||||
|
else:
|
||||||
|
h = h + emb_out
|
||||||
|
h = self.out_layers(h)
|
||||||
|
return self.skip_connection(x) + h
|
||||||
|
|
||||||
|
|
||||||
|
class AttentionBlock(nn.Module):
|
||||||
|
"""
|
||||||
|
An attention block that allows spatial positions to attend to each other.
|
||||||
|
Originally ported from here, but adapted to the N-d case.
|
||||||
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
channels,
|
||||||
|
num_heads=1,
|
||||||
|
num_head_channels=-1,
|
||||||
|
use_checkpoint=False,
|
||||||
|
use_new_attention_order=False,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
if num_head_channels == -1:
|
||||||
|
self.num_heads = num_heads
|
||||||
|
else:
|
||||||
|
assert (
|
||||||
|
channels % num_head_channels == 0
|
||||||
|
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
||||||
|
self.num_heads = channels // num_head_channels
|
||||||
|
self.use_checkpoint = use_checkpoint
|
||||||
|
self.norm = normalization(channels)
|
||||||
|
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
||||||
|
if use_new_attention_order:
|
||||||
|
# split qkv before split heads
|
||||||
|
self.attention = QKVAttention(self.num_heads)
|
||||||
|
else:
|
||||||
|
# split heads before split qkv
|
||||||
|
self.attention = QKVAttentionLegacy(self.num_heads)
|
||||||
|
|
||||||
|
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
||||||
|
#return pt_checkpoint(self._forward, x) # pytorch
|
||||||
|
|
||||||
|
def _forward(self, x):
|
||||||
|
b, c, *spatial = x.shape
|
||||||
|
x = x.reshape(b, c, -1)
|
||||||
|
qkv = self.qkv(self.norm(x))
|
||||||
|
h = self.attention(qkv)
|
||||||
|
h = self.proj_out(h)
|
||||||
|
return (x + h).reshape(b, c, *spatial)
|
||||||
|
|
||||||
|
|
||||||
|
def count_flops_attn(model, _x, y):
|
||||||
|
"""
|
||||||
|
A counter for the `thop` package to count the operations in an
|
||||||
|
attention operation.
|
||||||
|
Meant to be used like:
|
||||||
|
macs, params = thop.profile(
|
||||||
|
model,
|
||||||
|
inputs=(inputs, timestamps),
|
||||||
|
custom_ops={QKVAttention: QKVAttention.count_flops},
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
b, c, *spatial = y[0].shape
|
||||||
|
num_spatial = int(np.prod(spatial))
|
||||||
|
# We perform two matmuls with the same number of ops.
|
||||||
|
# The first computes the weight matrix, the second computes
|
||||||
|
# the combination of the value vectors.
|
||||||
|
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
||||||
|
model.total_ops += th.DoubleTensor([matmul_ops])
|
||||||
|
|
||||||
|
|
||||||
|
class QKVAttentionLegacy(nn.Module):
|
||||||
|
"""
|
||||||
|
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, n_heads):
|
||||||
|
super().__init__()
|
||||||
|
self.n_heads = n_heads
|
||||||
|
|
||||||
|
def forward(self, qkv):
|
||||||
|
"""
|
||||||
|
Apply QKV attention.
|
||||||
|
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
||||||
|
:return: an [N x (H * C) x T] tensor after attention.
|
||||||
|
"""
|
||||||
|
bs, width, length = qkv.shape
|
||||||
|
assert width % (3 * self.n_heads) == 0
|
||||||
|
ch = width // (3 * self.n_heads)
|
||||||
|
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
||||||
|
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||||
|
weight = th.einsum(
|
||||||
|
"bct,bcs->bts", q * scale, k * scale
|
||||||
|
) # More stable with f16 than dividing afterwards
|
||||||
|
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||||
|
a = th.einsum("bts,bcs->bct", weight, v)
|
||||||
|
return a.reshape(bs, -1, length)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def count_flops(model, _x, y):
|
||||||
|
return count_flops_attn(model, _x, y)
|
||||||
|
|
||||||
|
|
||||||
|
class QKVAttention(nn.Module):
|
||||||
|
"""
|
||||||
|
A module which performs QKV attention and splits in a different order.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, n_heads):
|
||||||
|
super().__init__()
|
||||||
|
self.n_heads = n_heads
|
||||||
|
|
||||||
|
def forward(self, qkv):
|
||||||
|
"""
|
||||||
|
Apply QKV attention.
|
||||||
|
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
||||||
|
:return: an [N x (H * C) x T] tensor after attention.
|
||||||
|
"""
|
||||||
|
bs, width, length = qkv.shape
|
||||||
|
assert width % (3 * self.n_heads) == 0
|
||||||
|
ch = width // (3 * self.n_heads)
|
||||||
|
q, k, v = qkv.chunk(3, dim=1)
|
||||||
|
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||||
|
weight = th.einsum(
|
||||||
|
"bct,bcs->bts",
|
||||||
|
(q * scale).view(bs * self.n_heads, ch, length),
|
||||||
|
(k * scale).view(bs * self.n_heads, ch, length),
|
||||||
|
) # More stable with f16 than dividing afterwards
|
||||||
|
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||||
|
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
||||||
|
return a.reshape(bs, -1, length)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def count_flops(model, _x, y):
|
||||||
|
return count_flops_attn(model, _x, y)
|
||||||
|
|
||||||
|
|
||||||
|
class UNetModel(nn.Module):
|
||||||
|
"""
|
||||||
|
The full UNet model with attention and timestep embedding.
|
||||||
|
:param in_channels: channels in the input Tensor.
|
||||||
|
:param model_channels: base channel count for the model.
|
||||||
|
:param out_channels: channels in the output Tensor.
|
||||||
|
:param num_res_blocks: number of residual blocks per downsample.
|
||||||
|
:param attention_resolutions: a collection of downsample rates at which
|
||||||
|
attention will take place. May be a set, list, or tuple.
|
||||||
|
For example, if this contains 4, then at 4x downsampling, attention
|
||||||
|
will be used.
|
||||||
|
:param dropout: the dropout probability.
|
||||||
|
:param channel_mult: channel multiplier for each level of the UNet.
|
||||||
|
:param conv_resample: if True, use learned convolutions for upsampling and
|
||||||
|
downsampling.
|
||||||
|
:param dims: determines if the signal is 1D, 2D, or 3D.
|
||||||
|
:param num_classes: if specified (as an int), then this model will be
|
||||||
|
class-conditional with `num_classes` classes.
|
||||||
|
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
||||||
|
:param num_heads: the number of attention heads in each attention layer.
|
||||||
|
:param num_heads_channels: if specified, ignore num_heads and instead use
|
||||||
|
a fixed channel width per attention head.
|
||||||
|
:param num_heads_upsample: works with num_heads to set a different number
|
||||||
|
of heads for upsampling. Deprecated.
|
||||||
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
||||||
|
:param resblock_updown: use residual blocks for up/downsampling.
|
||||||
|
:param use_new_attention_order: use a different attention pattern for potentially
|
||||||
|
increased efficiency.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
image_size,
|
||||||
|
in_channels,
|
||||||
|
model_channels,
|
||||||
|
out_channels,
|
||||||
|
num_res_blocks,
|
||||||
|
attention_resolutions,
|
||||||
|
dropout=0,
|
||||||
|
channel_mult=(1, 2, 4, 8),
|
||||||
|
conv_resample=True,
|
||||||
|
dims=2,
|
||||||
|
num_classes=None,
|
||||||
|
use_checkpoint=False,
|
||||||
|
use_fp16=False,
|
||||||
|
num_heads=-1,
|
||||||
|
num_head_channels=-1,
|
||||||
|
num_heads_upsample=-1,
|
||||||
|
use_scale_shift_norm=False,
|
||||||
|
resblock_updown=False,
|
||||||
|
use_new_attention_order=False,
|
||||||
|
use_spatial_transformer=False, # custom transformer support
|
||||||
|
transformer_depth=1, # custom transformer support
|
||||||
|
context_dim=None, # custom transformer support
|
||||||
|
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
||||||
|
legacy=True,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
if use_spatial_transformer:
|
||||||
|
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
||||||
|
|
||||||
|
if context_dim is not None:
|
||||||
|
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
||||||
|
from omegaconf.listconfig import ListConfig
|
||||||
|
if type(context_dim) == ListConfig:
|
||||||
|
context_dim = list(context_dim)
|
||||||
|
|
||||||
|
if num_heads_upsample == -1:
|
||||||
|
num_heads_upsample = num_heads
|
||||||
|
|
||||||
|
if num_heads == -1:
|
||||||
|
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
||||||
|
|
||||||
|
if num_head_channels == -1:
|
||||||
|
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
||||||
|
|
||||||
|
self.image_size = image_size
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.model_channels = model_channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.num_res_blocks = num_res_blocks
|
||||||
|
self.attention_resolutions = attention_resolutions
|
||||||
|
self.dropout = dropout
|
||||||
|
self.channel_mult = channel_mult
|
||||||
|
self.conv_resample = conv_resample
|
||||||
|
self.num_classes = num_classes
|
||||||
|
self.use_checkpoint = use_checkpoint
|
||||||
|
self.dtype = th.float16 if use_fp16 else th.float32
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.num_head_channels = num_head_channels
|
||||||
|
self.num_heads_upsample = num_heads_upsample
|
||||||
|
self.predict_codebook_ids = n_embed is not None
|
||||||
|
|
||||||
|
time_embed_dim = model_channels * 4
|
||||||
|
self.time_embed = nn.Sequential(
|
||||||
|
linear(model_channels, time_embed_dim),
|
||||||
|
nn.SiLU(),
|
||||||
|
linear(time_embed_dim, time_embed_dim),
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.num_classes is not None:
|
||||||
|
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
||||||
|
|
||||||
|
self.input_blocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
TimestepEmbedSequential(
|
||||||
|
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
||||||
|
)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
self._feature_size = model_channels
|
||||||
|
input_block_chans = [model_channels]
|
||||||
|
ch = model_channels
|
||||||
|
ds = 1
|
||||||
|
for level, mult in enumerate(channel_mult):
|
||||||
|
for _ in range(num_res_blocks):
|
||||||
|
layers = [
|
||||||
|
ResBlock(
|
||||||
|
ch,
|
||||||
|
time_embed_dim,
|
||||||
|
dropout,
|
||||||
|
out_channels=mult * model_channels,
|
||||||
|
dims=dims,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
use_scale_shift_norm=use_scale_shift_norm,
|
||||||
|
)
|
||||||
|
]
|
||||||
|
ch = mult * model_channels
|
||||||
|
if ds in attention_resolutions:
|
||||||
|
if num_head_channels == -1:
|
||||||
|
dim_head = ch // num_heads
|
||||||
|
else:
|
||||||
|
num_heads = ch // num_head_channels
|
||||||
|
dim_head = num_head_channels
|
||||||
|
if legacy:
|
||||||
|
#num_heads = 1
|
||||||
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||||
|
layers.append(
|
||||||
|
AttentionBlock(
|
||||||
|
ch,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
num_heads=num_heads,
|
||||||
|
num_head_channels=dim_head,
|
||||||
|
use_new_attention_order=use_new_attention_order,
|
||||||
|
) if not use_spatial_transformer else SpatialTransformer(
|
||||||
|
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
||||||
|
)
|
||||||
|
)
|
||||||
|
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||||
|
self._feature_size += ch
|
||||||
|
input_block_chans.append(ch)
|
||||||
|
if level != len(channel_mult) - 1:
|
||||||
|
out_ch = ch
|
||||||
|
self.input_blocks.append(
|
||||||
|
TimestepEmbedSequential(
|
||||||
|
ResBlock(
|
||||||
|
ch,
|
||||||
|
time_embed_dim,
|
||||||
|
dropout,
|
||||||
|
out_channels=out_ch,
|
||||||
|
dims=dims,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
use_scale_shift_norm=use_scale_shift_norm,
|
||||||
|
down=True,
|
||||||
|
)
|
||||||
|
if resblock_updown
|
||||||
|
else Downsample(
|
||||||
|
ch, conv_resample, dims=dims, out_channels=out_ch
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
ch = out_ch
|
||||||
|
input_block_chans.append(ch)
|
||||||
|
ds *= 2
|
||||||
|
self._feature_size += ch
|
||||||
|
|
||||||
|
if num_head_channels == -1:
|
||||||
|
dim_head = ch // num_heads
|
||||||
|
else:
|
||||||
|
num_heads = ch // num_head_channels
|
||||||
|
dim_head = num_head_channels
|
||||||
|
if legacy:
|
||||||
|
#num_heads = 1
|
||||||
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||||
|
self.middle_block = TimestepEmbedSequential(
|
||||||
|
ResBlock(
|
||||||
|
ch,
|
||||||
|
time_embed_dim,
|
||||||
|
dropout,
|
||||||
|
dims=dims,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
use_scale_shift_norm=use_scale_shift_norm,
|
||||||
|
),
|
||||||
|
AttentionBlock(
|
||||||
|
ch,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
num_heads=num_heads,
|
||||||
|
num_head_channels=dim_head,
|
||||||
|
use_new_attention_order=use_new_attention_order,
|
||||||
|
) if not use_spatial_transformer else SpatialTransformer(
|
||||||
|
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
||||||
|
),
|
||||||
|
ResBlock(
|
||||||
|
ch,
|
||||||
|
time_embed_dim,
|
||||||
|
dropout,
|
||||||
|
dims=dims,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
use_scale_shift_norm=use_scale_shift_norm,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
self._feature_size += ch
|
||||||
|
|
||||||
|
self.output_blocks = nn.ModuleList([])
|
||||||
|
for level, mult in list(enumerate(channel_mult))[::-1]:
|
||||||
|
for i in range(num_res_blocks + 1):
|
||||||
|
ich = input_block_chans.pop()
|
||||||
|
layers = [
|
||||||
|
ResBlock(
|
||||||
|
ch + ich,
|
||||||
|
time_embed_dim,
|
||||||
|
dropout,
|
||||||
|
out_channels=model_channels * mult,
|
||||||
|
dims=dims,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
use_scale_shift_norm=use_scale_shift_norm,
|
||||||
|
)
|
||||||
|
]
|
||||||
|
ch = model_channels * mult
|
||||||
|
if ds in attention_resolutions:
|
||||||
|
if num_head_channels == -1:
|
||||||
|
dim_head = ch // num_heads
|
||||||
|
else:
|
||||||
|
num_heads = ch // num_head_channels
|
||||||
|
dim_head = num_head_channels
|
||||||
|
if legacy:
|
||||||
|
#num_heads = 1
|
||||||
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||||
|
layers.append(
|
||||||
|
AttentionBlock(
|
||||||
|
ch,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
num_heads=num_heads_upsample,
|
||||||
|
num_head_channels=dim_head,
|
||||||
|
use_new_attention_order=use_new_attention_order,
|
||||||
|
) if not use_spatial_transformer else SpatialTransformer(
|
||||||
|
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
||||||
|
)
|
||||||
|
)
|
||||||
|
if level and i == num_res_blocks:
|
||||||
|
out_ch = ch
|
||||||
|
layers.append(
|
||||||
|
ResBlock(
|
||||||
|
ch,
|
||||||
|
time_embed_dim,
|
||||||
|
dropout,
|
||||||
|
out_channels=out_ch,
|
||||||
|
dims=dims,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
use_scale_shift_norm=use_scale_shift_norm,
|
||||||
|
up=True,
|
||||||
|
)
|
||||||
|
if resblock_updown
|
||||||
|
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
||||||
|
)
|
||||||
|
ds //= 2
|
||||||
|
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||||
|
self._feature_size += ch
|
||||||
|
|
||||||
|
self.out = nn.Sequential(
|
||||||
|
normalization(ch),
|
||||||
|
nn.SiLU(),
|
||||||
|
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
||||||
|
)
|
||||||
|
if self.predict_codebook_ids:
|
||||||
|
self.id_predictor = nn.Sequential(
|
||||||
|
normalization(ch),
|
||||||
|
conv_nd(dims, model_channels, n_embed, 1),
|
||||||
|
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
||||||
|
)
|
||||||
|
|
||||||
|
def convert_to_fp16(self):
|
||||||
|
"""
|
||||||
|
Convert the torso of the model to float16.
|
||||||
|
"""
|
||||||
|
self.input_blocks.apply(convert_module_to_f16)
|
||||||
|
self.middle_block.apply(convert_module_to_f16)
|
||||||
|
self.output_blocks.apply(convert_module_to_f16)
|
||||||
|
|
||||||
|
def convert_to_fp32(self):
|
||||||
|
"""
|
||||||
|
Convert the torso of the model to float32.
|
||||||
|
"""
|
||||||
|
self.input_blocks.apply(convert_module_to_f32)
|
||||||
|
self.middle_block.apply(convert_module_to_f32)
|
||||||
|
self.output_blocks.apply(convert_module_to_f32)
|
||||||
|
|
||||||
|
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
||||||
|
"""
|
||||||
|
Apply the model to an input batch.
|
||||||
|
:param x: an [N x C x ...] Tensor of inputs.
|
||||||
|
:param timesteps: a 1-D batch of timesteps.
|
||||||
|
:param context: conditioning plugged in via crossattn
|
||||||
|
:param y: an [N] Tensor of labels, if class-conditional.
|
||||||
|
:return: an [N x C x ...] Tensor of outputs.
|
||||||
|
"""
|
||||||
|
assert (y is not None) == (
|
||||||
|
self.num_classes is not None
|
||||||
|
), "must specify y if and only if the model is class-conditional"
|
||||||
|
hs = []
|
||||||
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
||||||
|
emb = self.time_embed(t_emb)
|
||||||
|
|
||||||
|
if self.num_classes is not None:
|
||||||
|
assert y.shape == (x.shape[0],)
|
||||||
|
emb = emb + self.label_emb(y)
|
||||||
|
|
||||||
|
h = x.type(self.dtype)
|
||||||
|
for module in self.input_blocks:
|
||||||
|
h = module(h, emb, context)
|
||||||
|
hs.append(h)
|
||||||
|
h = self.middle_block(h, emb, context)
|
||||||
|
for module in self.output_blocks:
|
||||||
|
h = th.cat([h, hs.pop()], dim=1)
|
||||||
|
h = module(h, emb, context)
|
||||||
|
h = h.type(x.dtype)
|
||||||
|
if self.predict_codebook_ids:
|
||||||
|
return self.id_predictor(h)
|
||||||
|
else:
|
||||||
|
return self.out(h)
|
||||||
|
|
||||||
|
|
||||||
|
class EncoderUNetModel(nn.Module):
|
||||||
|
"""
|
||||||
|
The half UNet model with attention and timestep embedding.
|
||||||
|
For usage, see UNet.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
image_size,
|
||||||
|
in_channels,
|
||||||
|
model_channels,
|
||||||
|
out_channels,
|
||||||
|
num_res_blocks,
|
||||||
|
attention_resolutions,
|
||||||
|
dropout=0,
|
||||||
|
channel_mult=(1, 2, 4, 8),
|
||||||
|
conv_resample=True,
|
||||||
|
dims=2,
|
||||||
|
use_checkpoint=False,
|
||||||
|
use_fp16=False,
|
||||||
|
num_heads=1,
|
||||||
|
num_head_channels=-1,
|
||||||
|
num_heads_upsample=-1,
|
||||||
|
use_scale_shift_norm=False,
|
||||||
|
resblock_updown=False,
|
||||||
|
use_new_attention_order=False,
|
||||||
|
pool="adaptive",
|
||||||
|
*args,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
if num_heads_upsample == -1:
|
||||||
|
num_heads_upsample = num_heads
|
||||||
|
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.model_channels = model_channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.num_res_blocks = num_res_blocks
|
||||||
|
self.attention_resolutions = attention_resolutions
|
||||||
|
self.dropout = dropout
|
||||||
|
self.channel_mult = channel_mult
|
||||||
|
self.conv_resample = conv_resample
|
||||||
|
self.use_checkpoint = use_checkpoint
|
||||||
|
self.dtype = th.float16 if use_fp16 else th.float32
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.num_head_channels = num_head_channels
|
||||||
|
self.num_heads_upsample = num_heads_upsample
|
||||||
|
|
||||||
|
time_embed_dim = model_channels * 4
|
||||||
|
self.time_embed = nn.Sequential(
|
||||||
|
linear(model_channels, time_embed_dim),
|
||||||
|
nn.SiLU(),
|
||||||
|
linear(time_embed_dim, time_embed_dim),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.input_blocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
TimestepEmbedSequential(
|
||||||
|
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
||||||
|
)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
self._feature_size = model_channels
|
||||||
|
input_block_chans = [model_channels]
|
||||||
|
ch = model_channels
|
||||||
|
ds = 1
|
||||||
|
for level, mult in enumerate(channel_mult):
|
||||||
|
for _ in range(num_res_blocks):
|
||||||
|
layers = [
|
||||||
|
ResBlock(
|
||||||
|
ch,
|
||||||
|
time_embed_dim,
|
||||||
|
dropout,
|
||||||
|
out_channels=mult * model_channels,
|
||||||
|
dims=dims,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
use_scale_shift_norm=use_scale_shift_norm,
|
||||||
|
)
|
||||||
|
]
|
||||||
|
ch = mult * model_channels
|
||||||
|
if ds in attention_resolutions:
|
||||||
|
layers.append(
|
||||||
|
AttentionBlock(
|
||||||
|
ch,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
num_heads=num_heads,
|
||||||
|
num_head_channels=num_head_channels,
|
||||||
|
use_new_attention_order=use_new_attention_order,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||||
|
self._feature_size += ch
|
||||||
|
input_block_chans.append(ch)
|
||||||
|
if level != len(channel_mult) - 1:
|
||||||
|
out_ch = ch
|
||||||
|
self.input_blocks.append(
|
||||||
|
TimestepEmbedSequential(
|
||||||
|
ResBlock(
|
||||||
|
ch,
|
||||||
|
time_embed_dim,
|
||||||
|
dropout,
|
||||||
|
out_channels=out_ch,
|
||||||
|
dims=dims,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
use_scale_shift_norm=use_scale_shift_norm,
|
||||||
|
down=True,
|
||||||
|
)
|
||||||
|
if resblock_updown
|
||||||
|
else Downsample(
|
||||||
|
ch, conv_resample, dims=dims, out_channels=out_ch
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
ch = out_ch
|
||||||
|
input_block_chans.append(ch)
|
||||||
|
ds *= 2
|
||||||
|
self._feature_size += ch
|
||||||
|
|
||||||
|
self.middle_block = TimestepEmbedSequential(
|
||||||
|
ResBlock(
|
||||||
|
ch,
|
||||||
|
time_embed_dim,
|
||||||
|
dropout,
|
||||||
|
dims=dims,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
use_scale_shift_norm=use_scale_shift_norm,
|
||||||
|
),
|
||||||
|
AttentionBlock(
|
||||||
|
ch,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
num_heads=num_heads,
|
||||||
|
num_head_channels=num_head_channels,
|
||||||
|
use_new_attention_order=use_new_attention_order,
|
||||||
|
),
|
||||||
|
ResBlock(
|
||||||
|
ch,
|
||||||
|
time_embed_dim,
|
||||||
|
dropout,
|
||||||
|
dims=dims,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
use_scale_shift_norm=use_scale_shift_norm,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
self._feature_size += ch
|
||||||
|
self.pool = pool
|
||||||
|
if pool == "adaptive":
|
||||||
|
self.out = nn.Sequential(
|
||||||
|
normalization(ch),
|
||||||
|
nn.SiLU(),
|
||||||
|
nn.AdaptiveAvgPool2d((1, 1)),
|
||||||
|
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
||||||
|
nn.Flatten(),
|
||||||
|
)
|
||||||
|
elif pool == "attention":
|
||||||
|
assert num_head_channels != -1
|
||||||
|
self.out = nn.Sequential(
|
||||||
|
normalization(ch),
|
||||||
|
nn.SiLU(),
|
||||||
|
AttentionPool2d(
|
||||||
|
(image_size // ds), ch, num_head_channels, out_channels
|
||||||
|
),
|
||||||
|
)
|
||||||
|
elif pool == "spatial":
|
||||||
|
self.out = nn.Sequential(
|
||||||
|
nn.Linear(self._feature_size, 2048),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(2048, self.out_channels),
|
||||||
|
)
|
||||||
|
elif pool == "spatial_v2":
|
||||||
|
self.out = nn.Sequential(
|
||||||
|
nn.Linear(self._feature_size, 2048),
|
||||||
|
normalization(2048),
|
||||||
|
nn.SiLU(),
|
||||||
|
nn.Linear(2048, self.out_channels),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f"Unexpected {pool} pooling")
|
||||||
|
|
||||||
|
def convert_to_fp16(self):
|
||||||
|
"""
|
||||||
|
Convert the torso of the model to float16.
|
||||||
|
"""
|
||||||
|
self.input_blocks.apply(convert_module_to_f16)
|
||||||
|
self.middle_block.apply(convert_module_to_f16)
|
||||||
|
|
||||||
|
def convert_to_fp32(self):
|
||||||
|
"""
|
||||||
|
Convert the torso of the model to float32.
|
||||||
|
"""
|
||||||
|
self.input_blocks.apply(convert_module_to_f32)
|
||||||
|
self.middle_block.apply(convert_module_to_f32)
|
||||||
|
|
||||||
|
def forward(self, x, timesteps):
|
||||||
|
"""
|
||||||
|
Apply the model to an input batch.
|
||||||
|
:param x: an [N x C x ...] Tensor of inputs.
|
||||||
|
:param timesteps: a 1-D batch of timesteps.
|
||||||
|
:return: an [N x K] Tensor of outputs.
|
||||||
|
"""
|
||||||
|
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||||
|
|
||||||
|
results = []
|
||||||
|
h = x.type(self.dtype)
|
||||||
|
for module in self.input_blocks:
|
||||||
|
h = module(h, emb)
|
||||||
|
if self.pool.startswith("spatial"):
|
||||||
|
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
||||||
|
h = self.middle_block(h, emb)
|
||||||
|
if self.pool.startswith("spatial"):
|
||||||
|
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
||||||
|
h = th.cat(results, axis=-1)
|
||||||
|
return self.out(h)
|
||||||
|
else:
|
||||||
|
h = h.type(x.dtype)
|
||||||
|
return self.out(h)
|
||||||
|
|
||||||
@@ -0,0 +1,267 @@
|
|||||||
|
# adopted from
|
||||||
|
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
||||||
|
# and
|
||||||
|
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
||||||
|
# and
|
||||||
|
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
||||||
|
#
|
||||||
|
# thanks!
|
||||||
|
|
||||||
|
|
||||||
|
import os
|
||||||
|
import math
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
from einops import repeat
|
||||||
|
|
||||||
|
from ldm.util import instantiate_from_config
|
||||||
|
|
||||||
|
|
||||||
|
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||||
|
if schedule == "linear":
|
||||||
|
betas = (
|
||||||
|
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
||||||
|
)
|
||||||
|
|
||||||
|
elif schedule == "cosine":
|
||||||
|
timesteps = (
|
||||||
|
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
||||||
|
)
|
||||||
|
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
||||||
|
alphas = torch.cos(alphas).pow(2)
|
||||||
|
alphas = alphas / alphas[0]
|
||||||
|
betas = 1 - alphas[1:] / alphas[:-1]
|
||||||
|
betas = np.clip(betas, a_min=0, a_max=0.999)
|
||||||
|
|
||||||
|
elif schedule == "sqrt_linear":
|
||||||
|
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
||||||
|
elif schedule == "sqrt":
|
||||||
|
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
||||||
|
else:
|
||||||
|
raise ValueError(f"schedule '{schedule}' unknown.")
|
||||||
|
return betas.numpy()
|
||||||
|
|
||||||
|
|
||||||
|
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
||||||
|
if ddim_discr_method == 'uniform':
|
||||||
|
c = num_ddpm_timesteps // num_ddim_timesteps
|
||||||
|
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
||||||
|
elif ddim_discr_method == 'quad':
|
||||||
|
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
||||||
|
|
||||||
|
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
||||||
|
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
||||||
|
steps_out = ddim_timesteps + 1
|
||||||
|
if verbose:
|
||||||
|
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
||||||
|
return steps_out
|
||||||
|
|
||||||
|
|
||||||
|
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
||||||
|
# select alphas for computing the variance schedule
|
||||||
|
alphas = alphacums[ddim_timesteps]
|
||||||
|
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
||||||
|
|
||||||
|
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
||||||
|
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
||||||
|
if verbose:
|
||||||
|
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
||||||
|
print(f'For the chosen value of eta, which is {eta}, '
|
||||||
|
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
||||||
|
return sigmas, alphas, alphas_prev
|
||||||
|
|
||||||
|
|
||||||
|
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
||||||
|
"""
|
||||||
|
Create a beta schedule that discretizes the given alpha_t_bar function,
|
||||||
|
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
||||||
|
:param num_diffusion_timesteps: the number of betas to produce.
|
||||||
|
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
||||||
|
produces the cumulative product of (1-beta) up to that
|
||||||
|
part of the diffusion process.
|
||||||
|
:param max_beta: the maximum beta to use; use values lower than 1 to
|
||||||
|
prevent singularities.
|
||||||
|
"""
|
||||||
|
betas = []
|
||||||
|
for i in range(num_diffusion_timesteps):
|
||||||
|
t1 = i / num_diffusion_timesteps
|
||||||
|
t2 = (i + 1) / num_diffusion_timesteps
|
||||||
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
||||||
|
return np.array(betas)
|
||||||
|
|
||||||
|
|
||||||
|
def extract_into_tensor(a, t, x_shape):
|
||||||
|
b, *_ = t.shape
|
||||||
|
out = a.gather(-1, t)
|
||||||
|
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
||||||
|
|
||||||
|
|
||||||
|
def checkpoint(func, inputs, params, flag):
|
||||||
|
"""
|
||||||
|
Evaluate a function without caching intermediate activations, allowing for
|
||||||
|
reduced memory at the expense of extra compute in the backward pass.
|
||||||
|
:param func: the function to evaluate.
|
||||||
|
:param inputs: the argument sequence to pass to `func`.
|
||||||
|
:param params: a sequence of parameters `func` depends on but does not
|
||||||
|
explicitly take as arguments.
|
||||||
|
:param flag: if False, disable gradient checkpointing.
|
||||||
|
"""
|
||||||
|
if flag:
|
||||||
|
args = tuple(inputs) + tuple(params)
|
||||||
|
return CheckpointFunction.apply(func, len(inputs), *args)
|
||||||
|
else:
|
||||||
|
return func(*inputs)
|
||||||
|
|
||||||
|
|
||||||
|
class CheckpointFunction(torch.autograd.Function):
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, run_function, length, *args):
|
||||||
|
ctx.run_function = run_function
|
||||||
|
ctx.input_tensors = list(args[:length])
|
||||||
|
ctx.input_params = list(args[length:])
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
output_tensors = ctx.run_function(*ctx.input_tensors)
|
||||||
|
return output_tensors
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, *output_grads):
|
||||||
|
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
||||||
|
with torch.enable_grad():
|
||||||
|
# Fixes a bug where the first op in run_function modifies the
|
||||||
|
# Tensor storage in place, which is not allowed for detach()'d
|
||||||
|
# Tensors.
|
||||||
|
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
||||||
|
output_tensors = ctx.run_function(*shallow_copies)
|
||||||
|
input_grads = torch.autograd.grad(
|
||||||
|
output_tensors,
|
||||||
|
ctx.input_tensors + ctx.input_params,
|
||||||
|
output_grads,
|
||||||
|
allow_unused=True,
|
||||||
|
)
|
||||||
|
del ctx.input_tensors
|
||||||
|
del ctx.input_params
|
||||||
|
del output_tensors
|
||||||
|
return (None, None) + input_grads
|
||||||
|
|
||||||
|
|
||||||
|
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
||||||
|
"""
|
||||||
|
Create sinusoidal timestep embeddings.
|
||||||
|
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
||||||
|
These may be fractional.
|
||||||
|
:param dim: the dimension of the output.
|
||||||
|
:param max_period: controls the minimum frequency of the embeddings.
|
||||||
|
:return: an [N x dim] Tensor of positional embeddings.
|
||||||
|
"""
|
||||||
|
if not repeat_only:
|
||||||
|
half = dim // 2
|
||||||
|
freqs = torch.exp(
|
||||||
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
||||||
|
).to(device=timesteps.device)
|
||||||
|
args = timesteps[:, None].float() * freqs[None]
|
||||||
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||||
|
if dim % 2:
|
||||||
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||||
|
else:
|
||||||
|
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
||||||
|
return embedding
|
||||||
|
|
||||||
|
|
||||||
|
def zero_module(module):
|
||||||
|
"""
|
||||||
|
Zero out the parameters of a module and return it.
|
||||||
|
"""
|
||||||
|
for p in module.parameters():
|
||||||
|
p.detach().zero_()
|
||||||
|
return module
|
||||||
|
|
||||||
|
|
||||||
|
def scale_module(module, scale):
|
||||||
|
"""
|
||||||
|
Scale the parameters of a module and return it.
|
||||||
|
"""
|
||||||
|
for p in module.parameters():
|
||||||
|
p.detach().mul_(scale)
|
||||||
|
return module
|
||||||
|
|
||||||
|
|
||||||
|
def mean_flat(tensor):
|
||||||
|
"""
|
||||||
|
Take the mean over all non-batch dimensions.
|
||||||
|
"""
|
||||||
|
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
||||||
|
|
||||||
|
|
||||||
|
def normalization(channels):
|
||||||
|
"""
|
||||||
|
Make a standard normalization layer.
|
||||||
|
:param channels: number of input channels.
|
||||||
|
:return: an nn.Module for normalization.
|
||||||
|
"""
|
||||||
|
return GroupNorm32(32, channels)
|
||||||
|
|
||||||
|
|
||||||
|
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
||||||
|
class SiLU(nn.Module):
|
||||||
|
def forward(self, x):
|
||||||
|
return x * torch.sigmoid(x)
|
||||||
|
|
||||||
|
|
||||||
|
class GroupNorm32(nn.GroupNorm):
|
||||||
|
def forward(self, x):
|
||||||
|
return super().forward(x.float()).type(x.dtype)
|
||||||
|
|
||||||
|
def conv_nd(dims, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
Create a 1D, 2D, or 3D convolution module.
|
||||||
|
"""
|
||||||
|
if dims == 1:
|
||||||
|
return nn.Conv1d(*args, **kwargs)
|
||||||
|
elif dims == 2:
|
||||||
|
return nn.Conv2d(*args, **kwargs)
|
||||||
|
elif dims == 3:
|
||||||
|
return nn.Conv3d(*args, **kwargs)
|
||||||
|
raise ValueError(f"unsupported dimensions: {dims}")
|
||||||
|
|
||||||
|
|
||||||
|
def linear(*args, **kwargs):
|
||||||
|
"""
|
||||||
|
Create a linear module.
|
||||||
|
"""
|
||||||
|
return nn.Linear(*args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
def avg_pool_nd(dims, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
Create a 1D, 2D, or 3D average pooling module.
|
||||||
|
"""
|
||||||
|
if dims == 1:
|
||||||
|
return nn.AvgPool1d(*args, **kwargs)
|
||||||
|
elif dims == 2:
|
||||||
|
return nn.AvgPool2d(*args, **kwargs)
|
||||||
|
elif dims == 3:
|
||||||
|
return nn.AvgPool3d(*args, **kwargs)
|
||||||
|
raise ValueError(f"unsupported dimensions: {dims}")
|
||||||
|
|
||||||
|
|
||||||
|
class HybridConditioner(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, c_concat_config, c_crossattn_config):
|
||||||
|
super().__init__()
|
||||||
|
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
||||||
|
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
||||||
|
|
||||||
|
def forward(self, c_concat, c_crossattn):
|
||||||
|
c_concat = self.concat_conditioner(c_concat)
|
||||||
|
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
||||||
|
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
||||||
|
|
||||||
|
|
||||||
|
def noise_like(shape, device, repeat=False):
|
||||||
|
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
||||||
|
noise = lambda: torch.randn(shape, device=device)
|
||||||
|
return repeat_noise() if repeat else noise()
|
||||||
@@ -0,0 +1,92 @@
|
|||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class AbstractDistribution:
|
||||||
|
def sample(self):
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
def mode(self):
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
|
||||||
|
class DiracDistribution(AbstractDistribution):
|
||||||
|
def __init__(self, value):
|
||||||
|
self.value = value
|
||||||
|
|
||||||
|
def sample(self):
|
||||||
|
return self.value
|
||||||
|
|
||||||
|
def mode(self):
|
||||||
|
return self.value
|
||||||
|
|
||||||
|
|
||||||
|
class DiagonalGaussianDistribution(object):
|
||||||
|
def __init__(self, parameters, deterministic=False):
|
||||||
|
self.parameters = parameters
|
||||||
|
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
||||||
|
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
||||||
|
self.deterministic = deterministic
|
||||||
|
self.std = torch.exp(0.5 * self.logvar)
|
||||||
|
self.var = torch.exp(self.logvar)
|
||||||
|
if self.deterministic:
|
||||||
|
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
||||||
|
|
||||||
|
def sample(self):
|
||||||
|
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def kl(self, other=None):
|
||||||
|
if self.deterministic:
|
||||||
|
return torch.Tensor([0.])
|
||||||
|
else:
|
||||||
|
if other is None:
|
||||||
|
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
||||||
|
+ self.var - 1.0 - self.logvar,
|
||||||
|
dim=[1, 2, 3])
|
||||||
|
else:
|
||||||
|
return 0.5 * torch.sum(
|
||||||
|
torch.pow(self.mean - other.mean, 2) / other.var
|
||||||
|
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
||||||
|
dim=[1, 2, 3])
|
||||||
|
|
||||||
|
def nll(self, sample, dims=[1,2,3]):
|
||||||
|
if self.deterministic:
|
||||||
|
return torch.Tensor([0.])
|
||||||
|
logtwopi = np.log(2.0 * np.pi)
|
||||||
|
return 0.5 * torch.sum(
|
||||||
|
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
||||||
|
dim=dims)
|
||||||
|
|
||||||
|
def mode(self):
|
||||||
|
return self.mean
|
||||||
|
|
||||||
|
|
||||||
|
def normal_kl(mean1, logvar1, mean2, logvar2):
|
||||||
|
"""
|
||||||
|
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
||||||
|
Compute the KL divergence between two gaussians.
|
||||||
|
Shapes are automatically broadcasted, so batches can be compared to
|
||||||
|
scalars, among other use cases.
|
||||||
|
"""
|
||||||
|
tensor = None
|
||||||
|
for obj in (mean1, logvar1, mean2, logvar2):
|
||||||
|
if isinstance(obj, torch.Tensor):
|
||||||
|
tensor = obj
|
||||||
|
break
|
||||||
|
assert tensor is not None, "at least one argument must be a Tensor"
|
||||||
|
|
||||||
|
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
||||||
|
# Tensors, but it does not work for torch.exp().
|
||||||
|
logvar1, logvar2 = [
|
||||||
|
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
||||||
|
for x in (logvar1, logvar2)
|
||||||
|
]
|
||||||
|
|
||||||
|
return 0.5 * (
|
||||||
|
-1.0
|
||||||
|
+ logvar2
|
||||||
|
- logvar1
|
||||||
|
+ torch.exp(logvar1 - logvar2)
|
||||||
|
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
||||||
|
)
|
||||||
76
OCR_earsing/latent_diffusion/ldm/modules/ema.py
Normal file
76
OCR_earsing/latent_diffusion/ldm/modules/ema.py
Normal file
@@ -0,0 +1,76 @@
|
|||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
|
||||||
|
class LitEma(nn.Module):
|
||||||
|
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
||||||
|
super().__init__()
|
||||||
|
if decay < 0.0 or decay > 1.0:
|
||||||
|
raise ValueError('Decay must be between 0 and 1')
|
||||||
|
|
||||||
|
self.m_name2s_name = {}
|
||||||
|
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
||||||
|
self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
|
||||||
|
else torch.tensor(-1,dtype=torch.int))
|
||||||
|
|
||||||
|
for name, p in model.named_parameters():
|
||||||
|
if p.requires_grad:
|
||||||
|
#remove as '.'-character is not allowed in buffers
|
||||||
|
s_name = name.replace('.','')
|
||||||
|
self.m_name2s_name.update({name:s_name})
|
||||||
|
self.register_buffer(s_name,p.clone().detach().data)
|
||||||
|
|
||||||
|
self.collected_params = []
|
||||||
|
|
||||||
|
def forward(self,model):
|
||||||
|
decay = self.decay
|
||||||
|
|
||||||
|
if self.num_updates >= 0:
|
||||||
|
self.num_updates += 1
|
||||||
|
decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
|
||||||
|
|
||||||
|
one_minus_decay = 1.0 - decay
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
m_param = dict(model.named_parameters())
|
||||||
|
shadow_params = dict(self.named_buffers())
|
||||||
|
|
||||||
|
for key in m_param:
|
||||||
|
if m_param[key].requires_grad:
|
||||||
|
sname = self.m_name2s_name[key]
|
||||||
|
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
||||||
|
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
||||||
|
else:
|
||||||
|
assert not key in self.m_name2s_name
|
||||||
|
|
||||||
|
def copy_to(self, model):
|
||||||
|
m_param = dict(model.named_parameters())
|
||||||
|
shadow_params = dict(self.named_buffers())
|
||||||
|
for key in m_param:
|
||||||
|
if m_param[key].requires_grad:
|
||||||
|
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
||||||
|
else:
|
||||||
|
assert not key in self.m_name2s_name
|
||||||
|
|
||||||
|
def store(self, parameters):
|
||||||
|
"""
|
||||||
|
Save the current parameters for restoring later.
|
||||||
|
Args:
|
||||||
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
||||||
|
temporarily stored.
|
||||||
|
"""
|
||||||
|
self.collected_params = [param.clone() for param in parameters]
|
||||||
|
|
||||||
|
def restore(self, parameters):
|
||||||
|
"""
|
||||||
|
Restore the parameters stored with the `store` method.
|
||||||
|
Useful to validate the model with EMA parameters without affecting the
|
||||||
|
original optimization process. Store the parameters before the
|
||||||
|
`copy_to` method. After validation (or model saving), use this to
|
||||||
|
restore the former parameters.
|
||||||
|
Args:
|
||||||
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
||||||
|
updated with the stored parameters.
|
||||||
|
"""
|
||||||
|
for c_param, param in zip(self.collected_params, parameters):
|
||||||
|
param.data.copy_(c_param.data)
|
||||||
202
OCR_earsing/latent_diffusion/ldm/modules/encoders/modules.py
Normal file
202
OCR_earsing/latent_diffusion/ldm/modules/encoders/modules.py
Normal file
@@ -0,0 +1,202 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from functools import partial
|
||||||
|
import clip
|
||||||
|
from einops import rearrange, repeat
|
||||||
|
import kornia
|
||||||
|
|
||||||
|
|
||||||
|
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
||||||
|
|
||||||
|
|
||||||
|
class AbstractEncoder(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def encode(self, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class ClassEmbedder(nn.Module):
|
||||||
|
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
||||||
|
super().__init__()
|
||||||
|
self.key = key
|
||||||
|
self.embedding = nn.Embedding(n_classes, embed_dim)
|
||||||
|
|
||||||
|
def forward(self, batch, key=None):
|
||||||
|
if key is None:
|
||||||
|
key = self.key
|
||||||
|
# this is for use in crossattn
|
||||||
|
c = batch[key][:, None]
|
||||||
|
c = self.embedding(c)
|
||||||
|
return c
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerEmbedder(AbstractEncoder):
|
||||||
|
"""Some transformer encoder layers"""
|
||||||
|
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
||||||
|
super().__init__()
|
||||||
|
self.device = device
|
||||||
|
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
||||||
|
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
||||||
|
|
||||||
|
def forward(self, tokens):
|
||||||
|
tokens = tokens.to(self.device) # meh
|
||||||
|
z = self.transformer(tokens, return_embeddings=True)
|
||||||
|
return z
|
||||||
|
|
||||||
|
def encode(self, x):
|
||||||
|
return self(x)
|
||||||
|
|
||||||
|
|
||||||
|
class BERTTokenizer(AbstractEncoder):
|
||||||
|
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
||||||
|
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
||||||
|
super().__init__()
|
||||||
|
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
||||||
|
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
||||||
|
self.device = device
|
||||||
|
self.vq_interface = vq_interface
|
||||||
|
self.max_length = max_length
|
||||||
|
|
||||||
|
def forward(self, text):
|
||||||
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
||||||
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||||
|
tokens = batch_encoding["input_ids"].to(self.device)
|
||||||
|
return tokens
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def encode(self, text):
|
||||||
|
tokens = self(text)
|
||||||
|
if not self.vq_interface:
|
||||||
|
return tokens
|
||||||
|
return None, None, [None, None, tokens]
|
||||||
|
|
||||||
|
def decode(self, text):
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
class BERTEmbedder(AbstractEncoder):
|
||||||
|
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
||||||
|
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
||||||
|
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
||||||
|
super().__init__()
|
||||||
|
self.use_tknz_fn = use_tokenizer
|
||||||
|
if self.use_tknz_fn:
|
||||||
|
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
||||||
|
self.device = device
|
||||||
|
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
||||||
|
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
||||||
|
emb_dropout=embedding_dropout)
|
||||||
|
|
||||||
|
def forward(self, text):
|
||||||
|
if self.use_tknz_fn:
|
||||||
|
tokens = self.tknz_fn(text)#.to(self.device)
|
||||||
|
else:
|
||||||
|
tokens = text
|
||||||
|
z = self.transformer(tokens, return_embeddings=True)
|
||||||
|
return z
|
||||||
|
|
||||||
|
def encode(self, text):
|
||||||
|
# output of length 77
|
||||||
|
return self(text)
|
||||||
|
|
||||||
|
|
||||||
|
class SpatialRescaler(nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
n_stages=1,
|
||||||
|
method='bilinear',
|
||||||
|
multiplier=0.5,
|
||||||
|
in_channels=3,
|
||||||
|
out_channels=None,
|
||||||
|
bias=False):
|
||||||
|
super().__init__()
|
||||||
|
self.n_stages = n_stages
|
||||||
|
assert self.n_stages >= 0
|
||||||
|
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
||||||
|
self.multiplier = multiplier
|
||||||
|
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
||||||
|
self.remap_output = out_channels is not None
|
||||||
|
if self.remap_output:
|
||||||
|
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
||||||
|
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
||||||
|
|
||||||
|
def forward(self,x):
|
||||||
|
for stage in range(self.n_stages):
|
||||||
|
x = self.interpolator(x, scale_factor=self.multiplier)
|
||||||
|
|
||||||
|
|
||||||
|
if self.remap_output:
|
||||||
|
x = self.channel_mapper(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def encode(self, x):
|
||||||
|
return self(x)
|
||||||
|
|
||||||
|
|
||||||
|
class FrozenCLIPTextEmbedder(nn.Module):
|
||||||
|
"""
|
||||||
|
Uses the CLIP transformer encoder for text.
|
||||||
|
"""
|
||||||
|
def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
|
||||||
|
super().__init__()
|
||||||
|
self.model, _ = clip.load(version, jit=False, device="cpu")
|
||||||
|
self.device = device
|
||||||
|
self.max_length = max_length
|
||||||
|
self.n_repeat = n_repeat
|
||||||
|
self.normalize = normalize
|
||||||
|
|
||||||
|
def freeze(self):
|
||||||
|
self.model = self.model.eval()
|
||||||
|
for param in self.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
def forward(self, text):
|
||||||
|
tokens = clip.tokenize(text).to(self.device)
|
||||||
|
z = self.model.encode_text(tokens)
|
||||||
|
if self.normalize:
|
||||||
|
z = z / torch.linalg.norm(z, dim=1, keepdim=True)
|
||||||
|
return z
|
||||||
|
|
||||||
|
def encode(self, text):
|
||||||
|
z = self(text)
|
||||||
|
if z.ndim==2:
|
||||||
|
z = z[:, None, :]
|
||||||
|
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
|
||||||
|
return z
|
||||||
|
|
||||||
|
|
||||||
|
class FrozenClipImageEmbedder(nn.Module):
|
||||||
|
"""
|
||||||
|
Uses the CLIP image encoder.
|
||||||
|
"""
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model,
|
||||||
|
jit=False,
|
||||||
|
device='cuda' if torch.cuda.is_available() else 'cpu',
|
||||||
|
antialias=False,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.model, _ = clip.load(name=model, device=device, jit=jit)
|
||||||
|
|
||||||
|
self.antialias = antialias
|
||||||
|
|
||||||
|
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
||||||
|
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
||||||
|
|
||||||
|
def preprocess(self, x):
|
||||||
|
# normalize to [0,1]
|
||||||
|
x = kornia.geometry.resize(x, (224, 224),
|
||||||
|
interpolation='bicubic',align_corners=True,
|
||||||
|
antialias=self.antialias)
|
||||||
|
x = (x + 1.) / 2.
|
||||||
|
# renormalize according to clip
|
||||||
|
x = kornia.enhance.normalize(x, self.mean, self.std)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# x is assumed to be in range [-1,1]
|
||||||
|
return self.model.encode_image(self.preprocess(x))
|
||||||
|
|
||||||
@@ -0,0 +1,2 @@
|
|||||||
|
from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
|
||||||
|
from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
|
||||||
@@ -0,0 +1,730 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
"""
|
||||||
|
# --------------------------------------------
|
||||||
|
# Super-Resolution
|
||||||
|
# --------------------------------------------
|
||||||
|
#
|
||||||
|
# Kai Zhang (cskaizhang@gmail.com)
|
||||||
|
# https://github.com/cszn
|
||||||
|
# From 2019/03--2021/08
|
||||||
|
# --------------------------------------------
|
||||||
|
"""
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from functools import partial
|
||||||
|
import random
|
||||||
|
from scipy import ndimage
|
||||||
|
import scipy
|
||||||
|
import scipy.stats as ss
|
||||||
|
from scipy.interpolate import interp2d
|
||||||
|
from scipy.linalg import orth
|
||||||
|
import albumentations
|
||||||
|
|
||||||
|
import ldm.modules.image_degradation.utils_image as util
|
||||||
|
|
||||||
|
|
||||||
|
def modcrop_np(img, sf):
|
||||||
|
'''
|
||||||
|
Args:
|
||||||
|
img: numpy image, WxH or WxHxC
|
||||||
|
sf: scale factor
|
||||||
|
Return:
|
||||||
|
cropped image
|
||||||
|
'''
|
||||||
|
w, h = img.shape[:2]
|
||||||
|
im = np.copy(img)
|
||||||
|
return im[:w - w % sf, :h - h % sf, ...]
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
# --------------------------------------------
|
||||||
|
# anisotropic Gaussian kernels
|
||||||
|
# --------------------------------------------
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def analytic_kernel(k):
|
||||||
|
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
||||||
|
k_size = k.shape[0]
|
||||||
|
# Calculate the big kernels size
|
||||||
|
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
||||||
|
# Loop over the small kernel to fill the big one
|
||||||
|
for r in range(k_size):
|
||||||
|
for c in range(k_size):
|
||||||
|
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
||||||
|
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
||||||
|
crop = k_size // 2
|
||||||
|
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
||||||
|
# Normalize to 1
|
||||||
|
return cropped_big_k / cropped_big_k.sum()
|
||||||
|
|
||||||
|
|
||||||
|
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
||||||
|
""" generate an anisotropic Gaussian kernel
|
||||||
|
Args:
|
||||||
|
ksize : e.g., 15, kernel size
|
||||||
|
theta : [0, pi], rotation angle range
|
||||||
|
l1 : [0.1,50], scaling of eigenvalues
|
||||||
|
l2 : [0.1,l1], scaling of eigenvalues
|
||||||
|
If l1 = l2, will get an isotropic Gaussian kernel.
|
||||||
|
Returns:
|
||||||
|
k : kernel
|
||||||
|
"""
|
||||||
|
|
||||||
|
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
||||||
|
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
||||||
|
D = np.array([[l1, 0], [0, l2]])
|
||||||
|
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
||||||
|
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
||||||
|
|
||||||
|
return k
|
||||||
|
|
||||||
|
|
||||||
|
def gm_blur_kernel(mean, cov, size=15):
|
||||||
|
center = size / 2.0 + 0.5
|
||||||
|
k = np.zeros([size, size])
|
||||||
|
for y in range(size):
|
||||||
|
for x in range(size):
|
||||||
|
cy = y - center + 1
|
||||||
|
cx = x - center + 1
|
||||||
|
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
||||||
|
|
||||||
|
k = k / np.sum(k)
|
||||||
|
return k
|
||||||
|
|
||||||
|
|
||||||
|
def shift_pixel(x, sf, upper_left=True):
|
||||||
|
"""shift pixel for super-resolution with different scale factors
|
||||||
|
Args:
|
||||||
|
x: WxHxC or WxH
|
||||||
|
sf: scale factor
|
||||||
|
upper_left: shift direction
|
||||||
|
"""
|
||||||
|
h, w = x.shape[:2]
|
||||||
|
shift = (sf - 1) * 0.5
|
||||||
|
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
||||||
|
if upper_left:
|
||||||
|
x1 = xv + shift
|
||||||
|
y1 = yv + shift
|
||||||
|
else:
|
||||||
|
x1 = xv - shift
|
||||||
|
y1 = yv - shift
|
||||||
|
|
||||||
|
x1 = np.clip(x1, 0, w - 1)
|
||||||
|
y1 = np.clip(y1, 0, h - 1)
|
||||||
|
|
||||||
|
if x.ndim == 2:
|
||||||
|
x = interp2d(xv, yv, x)(x1, y1)
|
||||||
|
if x.ndim == 3:
|
||||||
|
for i in range(x.shape[-1]):
|
||||||
|
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def blur(x, k):
|
||||||
|
'''
|
||||||
|
x: image, NxcxHxW
|
||||||
|
k: kernel, Nx1xhxw
|
||||||
|
'''
|
||||||
|
n, c = x.shape[:2]
|
||||||
|
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
||||||
|
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
||||||
|
k = k.repeat(1, c, 1, 1)
|
||||||
|
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
||||||
|
x = x.view(1, -1, x.shape[2], x.shape[3])
|
||||||
|
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
||||||
|
x = x.view(n, c, x.shape[2], x.shape[3])
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
||||||
|
""""
|
||||||
|
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
||||||
|
# Kai Zhang
|
||||||
|
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
||||||
|
# max_var = 2.5 * sf
|
||||||
|
"""
|
||||||
|
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
||||||
|
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
||||||
|
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
||||||
|
theta = np.random.rand() * np.pi # random theta
|
||||||
|
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
||||||
|
|
||||||
|
# Set COV matrix using Lambdas and Theta
|
||||||
|
LAMBDA = np.diag([lambda_1, lambda_2])
|
||||||
|
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
||||||
|
[np.sin(theta), np.cos(theta)]])
|
||||||
|
SIGMA = Q @ LAMBDA @ Q.T
|
||||||
|
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
||||||
|
|
||||||
|
# Set expectation position (shifting kernel for aligned image)
|
||||||
|
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
||||||
|
MU = MU[None, None, :, None]
|
||||||
|
|
||||||
|
# Create meshgrid for Gaussian
|
||||||
|
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
||||||
|
Z = np.stack([X, Y], 2)[:, :, :, None]
|
||||||
|
|
||||||
|
# Calcualte Gaussian for every pixel of the kernel
|
||||||
|
ZZ = Z - MU
|
||||||
|
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
||||||
|
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
||||||
|
|
||||||
|
# shift the kernel so it will be centered
|
||||||
|
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
||||||
|
|
||||||
|
# Normalize the kernel and return
|
||||||
|
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
||||||
|
kernel = raw_kernel / np.sum(raw_kernel)
|
||||||
|
return kernel
|
||||||
|
|
||||||
|
|
||||||
|
def fspecial_gaussian(hsize, sigma):
|
||||||
|
hsize = [hsize, hsize]
|
||||||
|
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
||||||
|
std = sigma
|
||||||
|
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
||||||
|
arg = -(x * x + y * y) / (2 * std * std)
|
||||||
|
h = np.exp(arg)
|
||||||
|
h[h < scipy.finfo(float).eps * h.max()] = 0
|
||||||
|
sumh = h.sum()
|
||||||
|
if sumh != 0:
|
||||||
|
h = h / sumh
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
def fspecial_laplacian(alpha):
|
||||||
|
alpha = max([0, min([alpha, 1])])
|
||||||
|
h1 = alpha / (alpha + 1)
|
||||||
|
h2 = (1 - alpha) / (alpha + 1)
|
||||||
|
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
||||||
|
h = np.array(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
def fspecial(filter_type, *args, **kwargs):
|
||||||
|
'''
|
||||||
|
python code from:
|
||||||
|
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
||||||
|
'''
|
||||||
|
if filter_type == 'gaussian':
|
||||||
|
return fspecial_gaussian(*args, **kwargs)
|
||||||
|
if filter_type == 'laplacian':
|
||||||
|
return fspecial_laplacian(*args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
# --------------------------------------------
|
||||||
|
# degradation models
|
||||||
|
# --------------------------------------------
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def bicubic_degradation(x, sf=3):
|
||||||
|
'''
|
||||||
|
Args:
|
||||||
|
x: HxWxC image, [0, 1]
|
||||||
|
sf: down-scale factor
|
||||||
|
Return:
|
||||||
|
bicubicly downsampled LR image
|
||||||
|
'''
|
||||||
|
x = util.imresize_np(x, scale=1 / sf)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def srmd_degradation(x, k, sf=3):
|
||||||
|
''' blur + bicubic downsampling
|
||||||
|
Args:
|
||||||
|
x: HxWxC image, [0, 1]
|
||||||
|
k: hxw, double
|
||||||
|
sf: down-scale factor
|
||||||
|
Return:
|
||||||
|
downsampled LR image
|
||||||
|
Reference:
|
||||||
|
@inproceedings{zhang2018learning,
|
||||||
|
title={Learning a single convolutional super-resolution network for multiple degradations},
|
||||||
|
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
||||||
|
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
||||||
|
pages={3262--3271},
|
||||||
|
year={2018}
|
||||||
|
}
|
||||||
|
'''
|
||||||
|
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
||||||
|
x = bicubic_degradation(x, sf=sf)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def dpsr_degradation(x, k, sf=3):
|
||||||
|
''' bicubic downsampling + blur
|
||||||
|
Args:
|
||||||
|
x: HxWxC image, [0, 1]
|
||||||
|
k: hxw, double
|
||||||
|
sf: down-scale factor
|
||||||
|
Return:
|
||||||
|
downsampled LR image
|
||||||
|
Reference:
|
||||||
|
@inproceedings{zhang2019deep,
|
||||||
|
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
||||||
|
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
||||||
|
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
||||||
|
pages={1671--1681},
|
||||||
|
year={2019}
|
||||||
|
}
|
||||||
|
'''
|
||||||
|
x = bicubic_degradation(x, sf=sf)
|
||||||
|
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def classical_degradation(x, k, sf=3):
|
||||||
|
''' blur + downsampling
|
||||||
|
Args:
|
||||||
|
x: HxWxC image, [0, 1]/[0, 255]
|
||||||
|
k: hxw, double
|
||||||
|
sf: down-scale factor
|
||||||
|
Return:
|
||||||
|
downsampled LR image
|
||||||
|
'''
|
||||||
|
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
||||||
|
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
||||||
|
st = 0
|
||||||
|
return x[st::sf, st::sf, ...]
|
||||||
|
|
||||||
|
|
||||||
|
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
||||||
|
"""USM sharpening. borrowed from real-ESRGAN
|
||||||
|
Input image: I; Blurry image: B.
|
||||||
|
1. K = I + weight * (I - B)
|
||||||
|
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
||||||
|
3. Blur mask:
|
||||||
|
4. Out = Mask * K + (1 - Mask) * I
|
||||||
|
Args:
|
||||||
|
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
||||||
|
weight (float): Sharp weight. Default: 1.
|
||||||
|
radius (float): Kernel size of Gaussian blur. Default: 50.
|
||||||
|
threshold (int):
|
||||||
|
"""
|
||||||
|
if radius % 2 == 0:
|
||||||
|
radius += 1
|
||||||
|
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
||||||
|
residual = img - blur
|
||||||
|
mask = np.abs(residual) * 255 > threshold
|
||||||
|
mask = mask.astype('float32')
|
||||||
|
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
||||||
|
|
||||||
|
K = img + weight * residual
|
||||||
|
K = np.clip(K, 0, 1)
|
||||||
|
return soft_mask * K + (1 - soft_mask) * img
|
||||||
|
|
||||||
|
|
||||||
|
def add_blur(img, sf=4):
|
||||||
|
wd2 = 4.0 + sf
|
||||||
|
wd = 2.0 + 0.2 * sf
|
||||||
|
if random.random() < 0.5:
|
||||||
|
l1 = wd2 * random.random()
|
||||||
|
l2 = wd2 * random.random()
|
||||||
|
k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
||||||
|
else:
|
||||||
|
k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
|
||||||
|
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
||||||
|
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def add_resize(img, sf=4):
|
||||||
|
rnum = np.random.rand()
|
||||||
|
if rnum > 0.8: # up
|
||||||
|
sf1 = random.uniform(1, 2)
|
||||||
|
elif rnum < 0.7: # down
|
||||||
|
sf1 = random.uniform(0.5 / sf, 1)
|
||||||
|
else:
|
||||||
|
sf1 = 1.0
|
||||||
|
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
||||||
|
# noise_level = random.randint(noise_level1, noise_level2)
|
||||||
|
# rnum = np.random.rand()
|
||||||
|
# if rnum > 0.6: # add color Gaussian noise
|
||||||
|
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||||
|
# elif rnum < 0.4: # add grayscale Gaussian noise
|
||||||
|
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||||
|
# else: # add noise
|
||||||
|
# L = noise_level2 / 255.
|
||||||
|
# D = np.diag(np.random.rand(3))
|
||||||
|
# U = orth(np.random.rand(3, 3))
|
||||||
|
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||||
|
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||||
|
# img = np.clip(img, 0.0, 1.0)
|
||||||
|
# return img
|
||||||
|
|
||||||
|
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
||||||
|
noise_level = random.randint(noise_level1, noise_level2)
|
||||||
|
rnum = np.random.rand()
|
||||||
|
if rnum > 0.6: # add color Gaussian noise
|
||||||
|
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||||
|
elif rnum < 0.4: # add grayscale Gaussian noise
|
||||||
|
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||||
|
else: # add noise
|
||||||
|
L = noise_level2 / 255.
|
||||||
|
D = np.diag(np.random.rand(3))
|
||||||
|
U = orth(np.random.rand(3, 3))
|
||||||
|
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||||
|
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
||||||
|
noise_level = random.randint(noise_level1, noise_level2)
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
rnum = random.random()
|
||||||
|
if rnum > 0.6:
|
||||||
|
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||||
|
elif rnum < 0.4:
|
||||||
|
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||||
|
else:
|
||||||
|
L = noise_level2 / 255.
|
||||||
|
D = np.diag(np.random.rand(3))
|
||||||
|
U = orth(np.random.rand(3, 3))
|
||||||
|
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||||
|
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def add_Poisson_noise(img):
|
||||||
|
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
||||||
|
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
||||||
|
if random.random() < 0.5:
|
||||||
|
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
||||||
|
else:
|
||||||
|
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
||||||
|
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
||||||
|
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
||||||
|
img += noise_gray[:, :, np.newaxis]
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def add_JPEG_noise(img):
|
||||||
|
quality_factor = random.randint(30, 95)
|
||||||
|
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
||||||
|
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
||||||
|
img = cv2.imdecode(encimg, 1)
|
||||||
|
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
||||||
|
h, w = lq.shape[:2]
|
||||||
|
rnd_h = random.randint(0, h - lq_patchsize)
|
||||||
|
rnd_w = random.randint(0, w - lq_patchsize)
|
||||||
|
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
||||||
|
|
||||||
|
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
||||||
|
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
||||||
|
return lq, hq
|
||||||
|
|
||||||
|
|
||||||
|
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
||||||
|
"""
|
||||||
|
This is the degradation model of BSRGAN from the paper
|
||||||
|
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
||||||
|
----------
|
||||||
|
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
||||||
|
sf: scale factor
|
||||||
|
isp_model: camera ISP model
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
||||||
|
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
||||||
|
"""
|
||||||
|
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
||||||
|
sf_ori = sf
|
||||||
|
|
||||||
|
h1, w1 = img.shape[:2]
|
||||||
|
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||||
|
h, w = img.shape[:2]
|
||||||
|
|
||||||
|
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
||||||
|
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
||||||
|
|
||||||
|
hq = img.copy()
|
||||||
|
|
||||||
|
if sf == 4 and random.random() < scale2_prob: # downsample1
|
||||||
|
if np.random.rand() < 0.5:
|
||||||
|
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
||||||
|
interpolation=random.choice([1, 2, 3]))
|
||||||
|
else:
|
||||||
|
img = util.imresize_np(img, 1 / 2, True)
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
sf = 2
|
||||||
|
|
||||||
|
shuffle_order = random.sample(range(7), 7)
|
||||||
|
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
||||||
|
if idx1 > idx2: # keep downsample3 last
|
||||||
|
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
||||||
|
|
||||||
|
for i in shuffle_order:
|
||||||
|
|
||||||
|
if i == 0:
|
||||||
|
img = add_blur(img, sf=sf)
|
||||||
|
|
||||||
|
elif i == 1:
|
||||||
|
img = add_blur(img, sf=sf)
|
||||||
|
|
||||||
|
elif i == 2:
|
||||||
|
a, b = img.shape[1], img.shape[0]
|
||||||
|
# downsample2
|
||||||
|
if random.random() < 0.75:
|
||||||
|
sf1 = random.uniform(1, 2 * sf)
|
||||||
|
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
||||||
|
interpolation=random.choice([1, 2, 3]))
|
||||||
|
else:
|
||||||
|
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
||||||
|
k_shifted = shift_pixel(k, sf)
|
||||||
|
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
||||||
|
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
||||||
|
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
|
||||||
|
elif i == 3:
|
||||||
|
# downsample3
|
||||||
|
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
|
||||||
|
elif i == 4:
|
||||||
|
# add Gaussian noise
|
||||||
|
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
||||||
|
|
||||||
|
elif i == 5:
|
||||||
|
# add JPEG noise
|
||||||
|
if random.random() < jpeg_prob:
|
||||||
|
img = add_JPEG_noise(img)
|
||||||
|
|
||||||
|
elif i == 6:
|
||||||
|
# add processed camera sensor noise
|
||||||
|
if random.random() < isp_prob and isp_model is not None:
|
||||||
|
with torch.no_grad():
|
||||||
|
img, hq = isp_model.forward(img.copy(), hq)
|
||||||
|
|
||||||
|
# add final JPEG compression noise
|
||||||
|
img = add_JPEG_noise(img)
|
||||||
|
|
||||||
|
# random crop
|
||||||
|
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
||||||
|
|
||||||
|
return img, hq
|
||||||
|
|
||||||
|
|
||||||
|
# todo no isp_model?
|
||||||
|
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
||||||
|
"""
|
||||||
|
This is the degradation model of BSRGAN from the paper
|
||||||
|
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
||||||
|
----------
|
||||||
|
sf: scale factor
|
||||||
|
isp_model: camera ISP model
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
||||||
|
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
||||||
|
"""
|
||||||
|
image = util.uint2single(image)
|
||||||
|
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
||||||
|
sf_ori = sf
|
||||||
|
|
||||||
|
h1, w1 = image.shape[:2]
|
||||||
|
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||||
|
h, w = image.shape[:2]
|
||||||
|
|
||||||
|
hq = image.copy()
|
||||||
|
|
||||||
|
if sf == 4 and random.random() < scale2_prob: # downsample1
|
||||||
|
if np.random.rand() < 0.5:
|
||||||
|
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
||||||
|
interpolation=random.choice([1, 2, 3]))
|
||||||
|
else:
|
||||||
|
image = util.imresize_np(image, 1 / 2, True)
|
||||||
|
image = np.clip(image, 0.0, 1.0)
|
||||||
|
sf = 2
|
||||||
|
|
||||||
|
shuffle_order = random.sample(range(7), 7)
|
||||||
|
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
||||||
|
if idx1 > idx2: # keep downsample3 last
|
||||||
|
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
||||||
|
|
||||||
|
for i in shuffle_order:
|
||||||
|
|
||||||
|
if i == 0:
|
||||||
|
image = add_blur(image, sf=sf)
|
||||||
|
|
||||||
|
elif i == 1:
|
||||||
|
image = add_blur(image, sf=sf)
|
||||||
|
|
||||||
|
elif i == 2:
|
||||||
|
a, b = image.shape[1], image.shape[0]
|
||||||
|
# downsample2
|
||||||
|
if random.random() < 0.75:
|
||||||
|
sf1 = random.uniform(1, 2 * sf)
|
||||||
|
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
||||||
|
interpolation=random.choice([1, 2, 3]))
|
||||||
|
else:
|
||||||
|
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
||||||
|
k_shifted = shift_pixel(k, sf)
|
||||||
|
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
||||||
|
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
||||||
|
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
||||||
|
image = np.clip(image, 0.0, 1.0)
|
||||||
|
|
||||||
|
elif i == 3:
|
||||||
|
# downsample3
|
||||||
|
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
||||||
|
image = np.clip(image, 0.0, 1.0)
|
||||||
|
|
||||||
|
elif i == 4:
|
||||||
|
# add Gaussian noise
|
||||||
|
image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
|
||||||
|
|
||||||
|
elif i == 5:
|
||||||
|
# add JPEG noise
|
||||||
|
if random.random() < jpeg_prob:
|
||||||
|
image = add_JPEG_noise(image)
|
||||||
|
|
||||||
|
# elif i == 6:
|
||||||
|
# # add processed camera sensor noise
|
||||||
|
# if random.random() < isp_prob and isp_model is not None:
|
||||||
|
# with torch.no_grad():
|
||||||
|
# img, hq = isp_model.forward(img.copy(), hq)
|
||||||
|
|
||||||
|
# add final JPEG compression noise
|
||||||
|
image = add_JPEG_noise(image)
|
||||||
|
image = util.single2uint(image)
|
||||||
|
example = {"image":image}
|
||||||
|
return example
|
||||||
|
|
||||||
|
|
||||||
|
# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
|
||||||
|
def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
|
||||||
|
"""
|
||||||
|
This is an extended degradation model by combining
|
||||||
|
the degradation models of BSRGAN and Real-ESRGAN
|
||||||
|
----------
|
||||||
|
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
||||||
|
sf: scale factor
|
||||||
|
use_shuffle: the degradation shuffle
|
||||||
|
use_sharp: sharpening the img
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
||||||
|
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
||||||
|
"""
|
||||||
|
|
||||||
|
h1, w1 = img.shape[:2]
|
||||||
|
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||||
|
h, w = img.shape[:2]
|
||||||
|
|
||||||
|
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
||||||
|
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
||||||
|
|
||||||
|
if use_sharp:
|
||||||
|
img = add_sharpening(img)
|
||||||
|
hq = img.copy()
|
||||||
|
|
||||||
|
if random.random() < shuffle_prob:
|
||||||
|
shuffle_order = random.sample(range(13), 13)
|
||||||
|
else:
|
||||||
|
shuffle_order = list(range(13))
|
||||||
|
# local shuffle for noise, JPEG is always the last one
|
||||||
|
shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
|
||||||
|
shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
|
||||||
|
|
||||||
|
poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
|
||||||
|
|
||||||
|
for i in shuffle_order:
|
||||||
|
if i == 0:
|
||||||
|
img = add_blur(img, sf=sf)
|
||||||
|
elif i == 1:
|
||||||
|
img = add_resize(img, sf=sf)
|
||||||
|
elif i == 2:
|
||||||
|
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
||||||
|
elif i == 3:
|
||||||
|
if random.random() < poisson_prob:
|
||||||
|
img = add_Poisson_noise(img)
|
||||||
|
elif i == 4:
|
||||||
|
if random.random() < speckle_prob:
|
||||||
|
img = add_speckle_noise(img)
|
||||||
|
elif i == 5:
|
||||||
|
if random.random() < isp_prob and isp_model is not None:
|
||||||
|
with torch.no_grad():
|
||||||
|
img, hq = isp_model.forward(img.copy(), hq)
|
||||||
|
elif i == 6:
|
||||||
|
img = add_JPEG_noise(img)
|
||||||
|
elif i == 7:
|
||||||
|
img = add_blur(img, sf=sf)
|
||||||
|
elif i == 8:
|
||||||
|
img = add_resize(img, sf=sf)
|
||||||
|
elif i == 9:
|
||||||
|
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
||||||
|
elif i == 10:
|
||||||
|
if random.random() < poisson_prob:
|
||||||
|
img = add_Poisson_noise(img)
|
||||||
|
elif i == 11:
|
||||||
|
if random.random() < speckle_prob:
|
||||||
|
img = add_speckle_noise(img)
|
||||||
|
elif i == 12:
|
||||||
|
if random.random() < isp_prob and isp_model is not None:
|
||||||
|
with torch.no_grad():
|
||||||
|
img, hq = isp_model.forward(img.copy(), hq)
|
||||||
|
else:
|
||||||
|
print('check the shuffle!')
|
||||||
|
|
||||||
|
# resize to desired size
|
||||||
|
img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
|
||||||
|
interpolation=random.choice([1, 2, 3]))
|
||||||
|
|
||||||
|
# add final JPEG compression noise
|
||||||
|
img = add_JPEG_noise(img)
|
||||||
|
|
||||||
|
# random crop
|
||||||
|
img, hq = random_crop(img, hq, sf, lq_patchsize)
|
||||||
|
|
||||||
|
return img, hq
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
print("hey")
|
||||||
|
img = util.imread_uint('utils/test.png', 3)
|
||||||
|
print(img)
|
||||||
|
img = util.uint2single(img)
|
||||||
|
print(img)
|
||||||
|
img = img[:448, :448]
|
||||||
|
h = img.shape[0] // 4
|
||||||
|
print("resizing to", h)
|
||||||
|
sf = 4
|
||||||
|
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
||||||
|
for i in range(20):
|
||||||
|
print(i)
|
||||||
|
img_lq = deg_fn(img)
|
||||||
|
print(img_lq)
|
||||||
|
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
|
||||||
|
print(img_lq.shape)
|
||||||
|
print("bicubic", img_lq_bicubic.shape)
|
||||||
|
print(img_hq.shape)
|
||||||
|
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||||
|
interpolation=0)
|
||||||
|
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||||
|
interpolation=0)
|
||||||
|
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
||||||
|
util.imsave(img_concat, str(i) + '.png')
|
||||||
|
|
||||||
|
|
||||||
@@ -0,0 +1,650 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from functools import partial
|
||||||
|
import random
|
||||||
|
from scipy import ndimage
|
||||||
|
import scipy
|
||||||
|
import scipy.stats as ss
|
||||||
|
from scipy.interpolate import interp2d
|
||||||
|
from scipy.linalg import orth
|
||||||
|
import albumentations
|
||||||
|
|
||||||
|
import ldm.modules.image_degradation.utils_image as util
|
||||||
|
|
||||||
|
"""
|
||||||
|
# --------------------------------------------
|
||||||
|
# Super-Resolution
|
||||||
|
# --------------------------------------------
|
||||||
|
#
|
||||||
|
# Kai Zhang (cskaizhang@gmail.com)
|
||||||
|
# https://github.com/cszn
|
||||||
|
# From 2019/03--2021/08
|
||||||
|
# --------------------------------------------
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def modcrop_np(img, sf):
|
||||||
|
'''
|
||||||
|
Args:
|
||||||
|
img: numpy image, WxH or WxHxC
|
||||||
|
sf: scale factor
|
||||||
|
Return:
|
||||||
|
cropped image
|
||||||
|
'''
|
||||||
|
w, h = img.shape[:2]
|
||||||
|
im = np.copy(img)
|
||||||
|
return im[:w - w % sf, :h - h % sf, ...]
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
# --------------------------------------------
|
||||||
|
# anisotropic Gaussian kernels
|
||||||
|
# --------------------------------------------
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def analytic_kernel(k):
|
||||||
|
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
||||||
|
k_size = k.shape[0]
|
||||||
|
# Calculate the big kernels size
|
||||||
|
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
||||||
|
# Loop over the small kernel to fill the big one
|
||||||
|
for r in range(k_size):
|
||||||
|
for c in range(k_size):
|
||||||
|
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
||||||
|
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
||||||
|
crop = k_size // 2
|
||||||
|
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
||||||
|
# Normalize to 1
|
||||||
|
return cropped_big_k / cropped_big_k.sum()
|
||||||
|
|
||||||
|
|
||||||
|
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
||||||
|
""" generate an anisotropic Gaussian kernel
|
||||||
|
Args:
|
||||||
|
ksize : e.g., 15, kernel size
|
||||||
|
theta : [0, pi], rotation angle range
|
||||||
|
l1 : [0.1,50], scaling of eigenvalues
|
||||||
|
l2 : [0.1,l1], scaling of eigenvalues
|
||||||
|
If l1 = l2, will get an isotropic Gaussian kernel.
|
||||||
|
Returns:
|
||||||
|
k : kernel
|
||||||
|
"""
|
||||||
|
|
||||||
|
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
||||||
|
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
||||||
|
D = np.array([[l1, 0], [0, l2]])
|
||||||
|
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
||||||
|
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
||||||
|
|
||||||
|
return k
|
||||||
|
|
||||||
|
|
||||||
|
def gm_blur_kernel(mean, cov, size=15):
|
||||||
|
center = size / 2.0 + 0.5
|
||||||
|
k = np.zeros([size, size])
|
||||||
|
for y in range(size):
|
||||||
|
for x in range(size):
|
||||||
|
cy = y - center + 1
|
||||||
|
cx = x - center + 1
|
||||||
|
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
||||||
|
|
||||||
|
k = k / np.sum(k)
|
||||||
|
return k
|
||||||
|
|
||||||
|
|
||||||
|
def shift_pixel(x, sf, upper_left=True):
|
||||||
|
"""shift pixel for super-resolution with different scale factors
|
||||||
|
Args:
|
||||||
|
x: WxHxC or WxH
|
||||||
|
sf: scale factor
|
||||||
|
upper_left: shift direction
|
||||||
|
"""
|
||||||
|
h, w = x.shape[:2]
|
||||||
|
shift = (sf - 1) * 0.5
|
||||||
|
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
||||||
|
if upper_left:
|
||||||
|
x1 = xv + shift
|
||||||
|
y1 = yv + shift
|
||||||
|
else:
|
||||||
|
x1 = xv - shift
|
||||||
|
y1 = yv - shift
|
||||||
|
|
||||||
|
x1 = np.clip(x1, 0, w - 1)
|
||||||
|
y1 = np.clip(y1, 0, h - 1)
|
||||||
|
|
||||||
|
if x.ndim == 2:
|
||||||
|
x = interp2d(xv, yv, x)(x1, y1)
|
||||||
|
if x.ndim == 3:
|
||||||
|
for i in range(x.shape[-1]):
|
||||||
|
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def blur(x, k):
|
||||||
|
'''
|
||||||
|
x: image, NxcxHxW
|
||||||
|
k: kernel, Nx1xhxw
|
||||||
|
'''
|
||||||
|
n, c = x.shape[:2]
|
||||||
|
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
||||||
|
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
||||||
|
k = k.repeat(1, c, 1, 1)
|
||||||
|
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
||||||
|
x = x.view(1, -1, x.shape[2], x.shape[3])
|
||||||
|
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
||||||
|
x = x.view(n, c, x.shape[2], x.shape[3])
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
||||||
|
""""
|
||||||
|
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
||||||
|
# Kai Zhang
|
||||||
|
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
||||||
|
# max_var = 2.5 * sf
|
||||||
|
"""
|
||||||
|
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
||||||
|
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
||||||
|
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
||||||
|
theta = np.random.rand() * np.pi # random theta
|
||||||
|
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
||||||
|
|
||||||
|
# Set COV matrix using Lambdas and Theta
|
||||||
|
LAMBDA = np.diag([lambda_1, lambda_2])
|
||||||
|
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
||||||
|
[np.sin(theta), np.cos(theta)]])
|
||||||
|
SIGMA = Q @ LAMBDA @ Q.T
|
||||||
|
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
||||||
|
|
||||||
|
# Set expectation position (shifting kernel for aligned image)
|
||||||
|
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
||||||
|
MU = MU[None, None, :, None]
|
||||||
|
|
||||||
|
# Create meshgrid for Gaussian
|
||||||
|
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
||||||
|
Z = np.stack([X, Y], 2)[:, :, :, None]
|
||||||
|
|
||||||
|
# Calcualte Gaussian for every pixel of the kernel
|
||||||
|
ZZ = Z - MU
|
||||||
|
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
||||||
|
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
||||||
|
|
||||||
|
# shift the kernel so it will be centered
|
||||||
|
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
||||||
|
|
||||||
|
# Normalize the kernel and return
|
||||||
|
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
||||||
|
kernel = raw_kernel / np.sum(raw_kernel)
|
||||||
|
return kernel
|
||||||
|
|
||||||
|
|
||||||
|
def fspecial_gaussian(hsize, sigma):
|
||||||
|
hsize = [hsize, hsize]
|
||||||
|
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
||||||
|
std = sigma
|
||||||
|
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
||||||
|
arg = -(x * x + y * y) / (2 * std * std)
|
||||||
|
h = np.exp(arg)
|
||||||
|
h[h < scipy.finfo(float).eps * h.max()] = 0
|
||||||
|
sumh = h.sum()
|
||||||
|
if sumh != 0:
|
||||||
|
h = h / sumh
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
def fspecial_laplacian(alpha):
|
||||||
|
alpha = max([0, min([alpha, 1])])
|
||||||
|
h1 = alpha / (alpha + 1)
|
||||||
|
h2 = (1 - alpha) / (alpha + 1)
|
||||||
|
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
||||||
|
h = np.array(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
def fspecial(filter_type, *args, **kwargs):
|
||||||
|
'''
|
||||||
|
python code from:
|
||||||
|
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
||||||
|
'''
|
||||||
|
if filter_type == 'gaussian':
|
||||||
|
return fspecial_gaussian(*args, **kwargs)
|
||||||
|
if filter_type == 'laplacian':
|
||||||
|
return fspecial_laplacian(*args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
# --------------------------------------------
|
||||||
|
# degradation models
|
||||||
|
# --------------------------------------------
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def bicubic_degradation(x, sf=3):
|
||||||
|
'''
|
||||||
|
Args:
|
||||||
|
x: HxWxC image, [0, 1]
|
||||||
|
sf: down-scale factor
|
||||||
|
Return:
|
||||||
|
bicubicly downsampled LR image
|
||||||
|
'''
|
||||||
|
x = util.imresize_np(x, scale=1 / sf)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def srmd_degradation(x, k, sf=3):
|
||||||
|
''' blur + bicubic downsampling
|
||||||
|
Args:
|
||||||
|
x: HxWxC image, [0, 1]
|
||||||
|
k: hxw, double
|
||||||
|
sf: down-scale factor
|
||||||
|
Return:
|
||||||
|
downsampled LR image
|
||||||
|
Reference:
|
||||||
|
@inproceedings{zhang2018learning,
|
||||||
|
title={Learning a single convolutional super-resolution network for multiple degradations},
|
||||||
|
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
||||||
|
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
||||||
|
pages={3262--3271},
|
||||||
|
year={2018}
|
||||||
|
}
|
||||||
|
'''
|
||||||
|
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
||||||
|
x = bicubic_degradation(x, sf=sf)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def dpsr_degradation(x, k, sf=3):
|
||||||
|
''' bicubic downsampling + blur
|
||||||
|
Args:
|
||||||
|
x: HxWxC image, [0, 1]
|
||||||
|
k: hxw, double
|
||||||
|
sf: down-scale factor
|
||||||
|
Return:
|
||||||
|
downsampled LR image
|
||||||
|
Reference:
|
||||||
|
@inproceedings{zhang2019deep,
|
||||||
|
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
||||||
|
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
||||||
|
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
||||||
|
pages={1671--1681},
|
||||||
|
year={2019}
|
||||||
|
}
|
||||||
|
'''
|
||||||
|
x = bicubic_degradation(x, sf=sf)
|
||||||
|
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def classical_degradation(x, k, sf=3):
|
||||||
|
''' blur + downsampling
|
||||||
|
Args:
|
||||||
|
x: HxWxC image, [0, 1]/[0, 255]
|
||||||
|
k: hxw, double
|
||||||
|
sf: down-scale factor
|
||||||
|
Return:
|
||||||
|
downsampled LR image
|
||||||
|
'''
|
||||||
|
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
||||||
|
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
||||||
|
st = 0
|
||||||
|
return x[st::sf, st::sf, ...]
|
||||||
|
|
||||||
|
|
||||||
|
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
||||||
|
"""USM sharpening. borrowed from real-ESRGAN
|
||||||
|
Input image: I; Blurry image: B.
|
||||||
|
1. K = I + weight * (I - B)
|
||||||
|
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
||||||
|
3. Blur mask:
|
||||||
|
4. Out = Mask * K + (1 - Mask) * I
|
||||||
|
Args:
|
||||||
|
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
||||||
|
weight (float): Sharp weight. Default: 1.
|
||||||
|
radius (float): Kernel size of Gaussian blur. Default: 50.
|
||||||
|
threshold (int):
|
||||||
|
"""
|
||||||
|
if radius % 2 == 0:
|
||||||
|
radius += 1
|
||||||
|
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
||||||
|
residual = img - blur
|
||||||
|
mask = np.abs(residual) * 255 > threshold
|
||||||
|
mask = mask.astype('float32')
|
||||||
|
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
||||||
|
|
||||||
|
K = img + weight * residual
|
||||||
|
K = np.clip(K, 0, 1)
|
||||||
|
return soft_mask * K + (1 - soft_mask) * img
|
||||||
|
|
||||||
|
|
||||||
|
def add_blur(img, sf=4):
|
||||||
|
wd2 = 4.0 + sf
|
||||||
|
wd = 2.0 + 0.2 * sf
|
||||||
|
|
||||||
|
wd2 = wd2/4
|
||||||
|
wd = wd/4
|
||||||
|
|
||||||
|
if random.random() < 0.5:
|
||||||
|
l1 = wd2 * random.random()
|
||||||
|
l2 = wd2 * random.random()
|
||||||
|
k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
||||||
|
else:
|
||||||
|
k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
|
||||||
|
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
||||||
|
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def add_resize(img, sf=4):
|
||||||
|
rnum = np.random.rand()
|
||||||
|
if rnum > 0.8: # up
|
||||||
|
sf1 = random.uniform(1, 2)
|
||||||
|
elif rnum < 0.7: # down
|
||||||
|
sf1 = random.uniform(0.5 / sf, 1)
|
||||||
|
else:
|
||||||
|
sf1 = 1.0
|
||||||
|
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
||||||
|
# noise_level = random.randint(noise_level1, noise_level2)
|
||||||
|
# rnum = np.random.rand()
|
||||||
|
# if rnum > 0.6: # add color Gaussian noise
|
||||||
|
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||||
|
# elif rnum < 0.4: # add grayscale Gaussian noise
|
||||||
|
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||||
|
# else: # add noise
|
||||||
|
# L = noise_level2 / 255.
|
||||||
|
# D = np.diag(np.random.rand(3))
|
||||||
|
# U = orth(np.random.rand(3, 3))
|
||||||
|
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||||
|
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||||
|
# img = np.clip(img, 0.0, 1.0)
|
||||||
|
# return img
|
||||||
|
|
||||||
|
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
||||||
|
noise_level = random.randint(noise_level1, noise_level2)
|
||||||
|
rnum = np.random.rand()
|
||||||
|
if rnum > 0.6: # add color Gaussian noise
|
||||||
|
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||||
|
elif rnum < 0.4: # add grayscale Gaussian noise
|
||||||
|
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||||
|
else: # add noise
|
||||||
|
L = noise_level2 / 255.
|
||||||
|
D = np.diag(np.random.rand(3))
|
||||||
|
U = orth(np.random.rand(3, 3))
|
||||||
|
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||||
|
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
||||||
|
noise_level = random.randint(noise_level1, noise_level2)
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
rnum = random.random()
|
||||||
|
if rnum > 0.6:
|
||||||
|
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||||
|
elif rnum < 0.4:
|
||||||
|
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||||
|
else:
|
||||||
|
L = noise_level2 / 255.
|
||||||
|
D = np.diag(np.random.rand(3))
|
||||||
|
U = orth(np.random.rand(3, 3))
|
||||||
|
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||||
|
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def add_Poisson_noise(img):
|
||||||
|
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
||||||
|
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
||||||
|
if random.random() < 0.5:
|
||||||
|
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
||||||
|
else:
|
||||||
|
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
||||||
|
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
||||||
|
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
||||||
|
img += noise_gray[:, :, np.newaxis]
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def add_JPEG_noise(img):
|
||||||
|
quality_factor = random.randint(80, 95)
|
||||||
|
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
||||||
|
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
||||||
|
img = cv2.imdecode(encimg, 1)
|
||||||
|
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
||||||
|
h, w = lq.shape[:2]
|
||||||
|
rnd_h = random.randint(0, h - lq_patchsize)
|
||||||
|
rnd_w = random.randint(0, w - lq_patchsize)
|
||||||
|
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
||||||
|
|
||||||
|
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
||||||
|
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
||||||
|
return lq, hq
|
||||||
|
|
||||||
|
|
||||||
|
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
||||||
|
"""
|
||||||
|
This is the degradation model of BSRGAN from the paper
|
||||||
|
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
||||||
|
----------
|
||||||
|
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
||||||
|
sf: scale factor
|
||||||
|
isp_model: camera ISP model
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
||||||
|
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
||||||
|
"""
|
||||||
|
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
||||||
|
sf_ori = sf
|
||||||
|
|
||||||
|
h1, w1 = img.shape[:2]
|
||||||
|
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||||
|
h, w = img.shape[:2]
|
||||||
|
|
||||||
|
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
||||||
|
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
||||||
|
|
||||||
|
hq = img.copy()
|
||||||
|
|
||||||
|
if sf == 4 and random.random() < scale2_prob: # downsample1
|
||||||
|
if np.random.rand() < 0.5:
|
||||||
|
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
||||||
|
interpolation=random.choice([1, 2, 3]))
|
||||||
|
else:
|
||||||
|
img = util.imresize_np(img, 1 / 2, True)
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
sf = 2
|
||||||
|
|
||||||
|
shuffle_order = random.sample(range(7), 7)
|
||||||
|
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
||||||
|
if idx1 > idx2: # keep downsample3 last
|
||||||
|
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
||||||
|
|
||||||
|
for i in shuffle_order:
|
||||||
|
|
||||||
|
if i == 0:
|
||||||
|
img = add_blur(img, sf=sf)
|
||||||
|
|
||||||
|
elif i == 1:
|
||||||
|
img = add_blur(img, sf=sf)
|
||||||
|
|
||||||
|
elif i == 2:
|
||||||
|
a, b = img.shape[1], img.shape[0]
|
||||||
|
# downsample2
|
||||||
|
if random.random() < 0.75:
|
||||||
|
sf1 = random.uniform(1, 2 * sf)
|
||||||
|
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
||||||
|
interpolation=random.choice([1, 2, 3]))
|
||||||
|
else:
|
||||||
|
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
||||||
|
k_shifted = shift_pixel(k, sf)
|
||||||
|
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
||||||
|
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
||||||
|
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
|
||||||
|
elif i == 3:
|
||||||
|
# downsample3
|
||||||
|
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
||||||
|
img = np.clip(img, 0.0, 1.0)
|
||||||
|
|
||||||
|
elif i == 4:
|
||||||
|
# add Gaussian noise
|
||||||
|
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
|
||||||
|
|
||||||
|
elif i == 5:
|
||||||
|
# add JPEG noise
|
||||||
|
if random.random() < jpeg_prob:
|
||||||
|
img = add_JPEG_noise(img)
|
||||||
|
|
||||||
|
elif i == 6:
|
||||||
|
# add processed camera sensor noise
|
||||||
|
if random.random() < isp_prob and isp_model is not None:
|
||||||
|
with torch.no_grad():
|
||||||
|
img, hq = isp_model.forward(img.copy(), hq)
|
||||||
|
|
||||||
|
# add final JPEG compression noise
|
||||||
|
img = add_JPEG_noise(img)
|
||||||
|
|
||||||
|
# random crop
|
||||||
|
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
||||||
|
|
||||||
|
return img, hq
|
||||||
|
|
||||||
|
|
||||||
|
# todo no isp_model?
|
||||||
|
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
||||||
|
"""
|
||||||
|
This is the degradation model of BSRGAN from the paper
|
||||||
|
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
||||||
|
----------
|
||||||
|
sf: scale factor
|
||||||
|
isp_model: camera ISP model
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
||||||
|
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
||||||
|
"""
|
||||||
|
image = util.uint2single(image)
|
||||||
|
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
||||||
|
sf_ori = sf
|
||||||
|
|
||||||
|
h1, w1 = image.shape[:2]
|
||||||
|
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||||
|
h, w = image.shape[:2]
|
||||||
|
|
||||||
|
hq = image.copy()
|
||||||
|
|
||||||
|
if sf == 4 and random.random() < scale2_prob: # downsample1
|
||||||
|
if np.random.rand() < 0.5:
|
||||||
|
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
||||||
|
interpolation=random.choice([1, 2, 3]))
|
||||||
|
else:
|
||||||
|
image = util.imresize_np(image, 1 / 2, True)
|
||||||
|
image = np.clip(image, 0.0, 1.0)
|
||||||
|
sf = 2
|
||||||
|
|
||||||
|
shuffle_order = random.sample(range(7), 7)
|
||||||
|
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
||||||
|
if idx1 > idx2: # keep downsample3 last
|
||||||
|
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
||||||
|
|
||||||
|
for i in shuffle_order:
|
||||||
|
|
||||||
|
if i == 0:
|
||||||
|
image = add_blur(image, sf=sf)
|
||||||
|
|
||||||
|
# elif i == 1:
|
||||||
|
# image = add_blur(image, sf=sf)
|
||||||
|
|
||||||
|
if i == 0:
|
||||||
|
pass
|
||||||
|
|
||||||
|
elif i == 2:
|
||||||
|
a, b = image.shape[1], image.shape[0]
|
||||||
|
# downsample2
|
||||||
|
if random.random() < 0.8:
|
||||||
|
sf1 = random.uniform(1, 2 * sf)
|
||||||
|
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
||||||
|
interpolation=random.choice([1, 2, 3]))
|
||||||
|
else:
|
||||||
|
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
||||||
|
k_shifted = shift_pixel(k, sf)
|
||||||
|
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
||||||
|
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
||||||
|
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
||||||
|
|
||||||
|
image = np.clip(image, 0.0, 1.0)
|
||||||
|
|
||||||
|
elif i == 3:
|
||||||
|
# downsample3
|
||||||
|
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
||||||
|
image = np.clip(image, 0.0, 1.0)
|
||||||
|
|
||||||
|
elif i == 4:
|
||||||
|
# add Gaussian noise
|
||||||
|
image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
|
||||||
|
|
||||||
|
elif i == 5:
|
||||||
|
# add JPEG noise
|
||||||
|
if random.random() < jpeg_prob:
|
||||||
|
image = add_JPEG_noise(image)
|
||||||
|
#
|
||||||
|
# elif i == 6:
|
||||||
|
# # add processed camera sensor noise
|
||||||
|
# if random.random() < isp_prob and isp_model is not None:
|
||||||
|
# with torch.no_grad():
|
||||||
|
# img, hq = isp_model.forward(img.copy(), hq)
|
||||||
|
|
||||||
|
# add final JPEG compression noise
|
||||||
|
image = add_JPEG_noise(image)
|
||||||
|
image = util.single2uint(image)
|
||||||
|
example = {"image": image}
|
||||||
|
return example
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
print("hey")
|
||||||
|
img = util.imread_uint('utils/test.png', 3)
|
||||||
|
img = img[:448, :448]
|
||||||
|
h = img.shape[0] // 4
|
||||||
|
print("resizing to", h)
|
||||||
|
sf = 4
|
||||||
|
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
||||||
|
for i in range(20):
|
||||||
|
print(i)
|
||||||
|
img_hq = img
|
||||||
|
img_lq = deg_fn(img)["image"]
|
||||||
|
img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
|
||||||
|
print(img_lq)
|
||||||
|
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
|
||||||
|
print(img_lq.shape)
|
||||||
|
print("bicubic", img_lq_bicubic.shape)
|
||||||
|
print(img_hq.shape)
|
||||||
|
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||||
|
interpolation=0)
|
||||||
|
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
|
||||||
|
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||||
|
interpolation=0)
|
||||||
|
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
||||||
|
util.imsave(img_concat, str(i) + '.png')
|
||||||
Binary file not shown.
|
After Width: | Height: | Size: 431 KiB |
@@ -0,0 +1,916 @@
|
|||||||
|
import os
|
||||||
|
import math
|
||||||
|
import random
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import cv2
|
||||||
|
from torchvision.utils import make_grid
|
||||||
|
from datetime import datetime
|
||||||
|
#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
|
||||||
|
|
||||||
|
|
||||||
|
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
# --------------------------------------------
|
||||||
|
# Kai Zhang (github: https://github.com/cszn)
|
||||||
|
# 03/Mar/2019
|
||||||
|
# --------------------------------------------
|
||||||
|
# https://github.com/twhui/SRGAN-pyTorch
|
||||||
|
# https://github.com/xinntao/BasicSR
|
||||||
|
# --------------------------------------------
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
|
||||||
|
|
||||||
|
|
||||||
|
def is_image_file(filename):
|
||||||
|
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
|
||||||
|
|
||||||
|
|
||||||
|
def get_timestamp():
|
||||||
|
return datetime.now().strftime('%y%m%d-%H%M%S')
|
||||||
|
|
||||||
|
|
||||||
|
def imshow(x, title=None, cbar=False, figsize=None):
|
||||||
|
plt.figure(figsize=figsize)
|
||||||
|
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
|
||||||
|
if title:
|
||||||
|
plt.title(title)
|
||||||
|
if cbar:
|
||||||
|
plt.colorbar()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
def surf(Z, cmap='rainbow', figsize=None):
|
||||||
|
plt.figure(figsize=figsize)
|
||||||
|
ax3 = plt.axes(projection='3d')
|
||||||
|
|
||||||
|
w, h = Z.shape[:2]
|
||||||
|
xx = np.arange(0,w,1)
|
||||||
|
yy = np.arange(0,h,1)
|
||||||
|
X, Y = np.meshgrid(xx, yy)
|
||||||
|
ax3.plot_surface(X,Y,Z,cmap=cmap)
|
||||||
|
#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
# --------------------------------------------
|
||||||
|
# get image pathes
|
||||||
|
# --------------------------------------------
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
def get_image_paths(dataroot):
|
||||||
|
paths = None # return None if dataroot is None
|
||||||
|
if dataroot is not None:
|
||||||
|
paths = sorted(_get_paths_from_images(dataroot))
|
||||||
|
return paths
|
||||||
|
|
||||||
|
|
||||||
|
def _get_paths_from_images(path):
|
||||||
|
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
|
||||||
|
images = []
|
||||||
|
for dirpath, _, fnames in sorted(os.walk(path)):
|
||||||
|
for fname in sorted(fnames):
|
||||||
|
if is_image_file(fname):
|
||||||
|
img_path = os.path.join(dirpath, fname)
|
||||||
|
images.append(img_path)
|
||||||
|
assert images, '{:s} has no valid image file'.format(path)
|
||||||
|
return images
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
# --------------------------------------------
|
||||||
|
# split large images into small images
|
||||||
|
# --------------------------------------------
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
|
||||||
|
w, h = img.shape[:2]
|
||||||
|
patches = []
|
||||||
|
if w > p_max and h > p_max:
|
||||||
|
w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
|
||||||
|
h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
|
||||||
|
w1.append(w-p_size)
|
||||||
|
h1.append(h-p_size)
|
||||||
|
# print(w1)
|
||||||
|
# print(h1)
|
||||||
|
for i in w1:
|
||||||
|
for j in h1:
|
||||||
|
patches.append(img[i:i+p_size, j:j+p_size,:])
|
||||||
|
else:
|
||||||
|
patches.append(img)
|
||||||
|
|
||||||
|
return patches
|
||||||
|
|
||||||
|
|
||||||
|
def imssave(imgs, img_path):
|
||||||
|
"""
|
||||||
|
imgs: list, N images of size WxHxC
|
||||||
|
"""
|
||||||
|
img_name, ext = os.path.splitext(os.path.basename(img_path))
|
||||||
|
|
||||||
|
for i, img in enumerate(imgs):
|
||||||
|
if img.ndim == 3:
|
||||||
|
img = img[:, :, [2, 1, 0]]
|
||||||
|
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
|
||||||
|
cv2.imwrite(new_path, img)
|
||||||
|
|
||||||
|
|
||||||
|
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
|
||||||
|
"""
|
||||||
|
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
|
||||||
|
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
|
||||||
|
will be splitted.
|
||||||
|
Args:
|
||||||
|
original_dataroot:
|
||||||
|
taget_dataroot:
|
||||||
|
p_size: size of small images
|
||||||
|
p_overlap: patch size in training is a good choice
|
||||||
|
p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
|
||||||
|
"""
|
||||||
|
paths = get_image_paths(original_dataroot)
|
||||||
|
for img_path in paths:
|
||||||
|
# img_name, ext = os.path.splitext(os.path.basename(img_path))
|
||||||
|
img = imread_uint(img_path, n_channels=n_channels)
|
||||||
|
patches = patches_from_image(img, p_size, p_overlap, p_max)
|
||||||
|
imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
|
||||||
|
#if original_dataroot == taget_dataroot:
|
||||||
|
#del img_path
|
||||||
|
|
||||||
|
'''
|
||||||
|
# --------------------------------------------
|
||||||
|
# makedir
|
||||||
|
# --------------------------------------------
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
def mkdir(path):
|
||||||
|
if not os.path.exists(path):
|
||||||
|
os.makedirs(path)
|
||||||
|
|
||||||
|
|
||||||
|
def mkdirs(paths):
|
||||||
|
if isinstance(paths, str):
|
||||||
|
mkdir(paths)
|
||||||
|
else:
|
||||||
|
for path in paths:
|
||||||
|
mkdir(path)
|
||||||
|
|
||||||
|
|
||||||
|
def mkdir_and_rename(path):
|
||||||
|
if os.path.exists(path):
|
||||||
|
new_name = path + '_archived_' + get_timestamp()
|
||||||
|
print('Path already exists. Rename it to [{:s}]'.format(new_name))
|
||||||
|
os.rename(path, new_name)
|
||||||
|
os.makedirs(path)
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
# --------------------------------------------
|
||||||
|
# read image from path
|
||||||
|
# opencv is fast, but read BGR numpy image
|
||||||
|
# --------------------------------------------
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------
|
||||||
|
# get uint8 image of size HxWxn_channles (RGB)
|
||||||
|
# --------------------------------------------
|
||||||
|
def imread_uint(path, n_channels=3):
|
||||||
|
# input: path
|
||||||
|
# output: HxWx3(RGB or GGG), or HxWx1 (G)
|
||||||
|
if n_channels == 1:
|
||||||
|
img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
|
||||||
|
img = np.expand_dims(img, axis=2) # HxWx1
|
||||||
|
elif n_channels == 3:
|
||||||
|
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
|
||||||
|
if img.ndim == 2:
|
||||||
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
|
||||||
|
else:
|
||||||
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------
|
||||||
|
# matlab's imwrite
|
||||||
|
# --------------------------------------------
|
||||||
|
def imsave(img, img_path):
|
||||||
|
img = np.squeeze(img)
|
||||||
|
if img.ndim == 3:
|
||||||
|
img = img[:, :, [2, 1, 0]]
|
||||||
|
cv2.imwrite(img_path, img)
|
||||||
|
|
||||||
|
def imwrite(img, img_path):
|
||||||
|
img = np.squeeze(img)
|
||||||
|
if img.ndim == 3:
|
||||||
|
img = img[:, :, [2, 1, 0]]
|
||||||
|
cv2.imwrite(img_path, img)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------
|
||||||
|
# get single image of size HxWxn_channles (BGR)
|
||||||
|
# --------------------------------------------
|
||||||
|
def read_img(path):
|
||||||
|
# read image by cv2
|
||||||
|
# return: Numpy float32, HWC, BGR, [0,1]
|
||||||
|
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
|
||||||
|
img = img.astype(np.float32) / 255.
|
||||||
|
if img.ndim == 2:
|
||||||
|
img = np.expand_dims(img, axis=2)
|
||||||
|
# some images have 4 channels
|
||||||
|
if img.shape[2] > 3:
|
||||||
|
img = img[:, :, :3]
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
# --------------------------------------------
|
||||||
|
# image format conversion
|
||||||
|
# --------------------------------------------
|
||||||
|
# numpy(single) <---> numpy(unit)
|
||||||
|
# numpy(single) <---> tensor
|
||||||
|
# numpy(unit) <---> tensor
|
||||||
|
# --------------------------------------------
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------
|
||||||
|
# numpy(single) [0, 1] <---> numpy(unit)
|
||||||
|
# --------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
def uint2single(img):
|
||||||
|
|
||||||
|
return np.float32(img/255.)
|
||||||
|
|
||||||
|
|
||||||
|
def single2uint(img):
|
||||||
|
|
||||||
|
return np.uint8((img.clip(0, 1)*255.).round())
|
||||||
|
|
||||||
|
|
||||||
|
def uint162single(img):
|
||||||
|
|
||||||
|
return np.float32(img/65535.)
|
||||||
|
|
||||||
|
|
||||||
|
def single2uint16(img):
|
||||||
|
|
||||||
|
return np.uint16((img.clip(0, 1)*65535.).round())
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------
|
||||||
|
# numpy(unit) (HxWxC or HxW) <---> tensor
|
||||||
|
# --------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
# convert uint to 4-dimensional torch tensor
|
||||||
|
def uint2tensor4(img):
|
||||||
|
if img.ndim == 2:
|
||||||
|
img = np.expand_dims(img, axis=2)
|
||||||
|
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
|
||||||
|
|
||||||
|
|
||||||
|
# convert uint to 3-dimensional torch tensor
|
||||||
|
def uint2tensor3(img):
|
||||||
|
if img.ndim == 2:
|
||||||
|
img = np.expand_dims(img, axis=2)
|
||||||
|
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
|
||||||
|
|
||||||
|
|
||||||
|
# convert 2/3/4-dimensional torch tensor to uint
|
||||||
|
def tensor2uint(img):
|
||||||
|
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
|
||||||
|
if img.ndim == 3:
|
||||||
|
img = np.transpose(img, (1, 2, 0))
|
||||||
|
return np.uint8((img*255.0).round())
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------
|
||||||
|
# numpy(single) (HxWxC) <---> tensor
|
||||||
|
# --------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
# convert single (HxWxC) to 3-dimensional torch tensor
|
||||||
|
def single2tensor3(img):
|
||||||
|
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
|
||||||
|
|
||||||
|
|
||||||
|
# convert single (HxWxC) to 4-dimensional torch tensor
|
||||||
|
def single2tensor4(img):
|
||||||
|
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
|
||||||
|
|
||||||
|
|
||||||
|
# convert torch tensor to single
|
||||||
|
def tensor2single(img):
|
||||||
|
img = img.data.squeeze().float().cpu().numpy()
|
||||||
|
if img.ndim == 3:
|
||||||
|
img = np.transpose(img, (1, 2, 0))
|
||||||
|
|
||||||
|
return img
|
||||||
|
|
||||||
|
# convert torch tensor to single
|
||||||
|
def tensor2single3(img):
|
||||||
|
img = img.data.squeeze().float().cpu().numpy()
|
||||||
|
if img.ndim == 3:
|
||||||
|
img = np.transpose(img, (1, 2, 0))
|
||||||
|
elif img.ndim == 2:
|
||||||
|
img = np.expand_dims(img, axis=2)
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def single2tensor5(img):
|
||||||
|
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
|
||||||
|
|
||||||
|
|
||||||
|
def single32tensor5(img):
|
||||||
|
return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
|
||||||
|
|
||||||
|
|
||||||
|
def single42tensor4(img):
|
||||||
|
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
|
||||||
|
|
||||||
|
|
||||||
|
# from skimage.io import imread, imsave
|
||||||
|
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
|
||||||
|
'''
|
||||||
|
Converts a torch Tensor into an image Numpy array of BGR channel order
|
||||||
|
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
|
||||||
|
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
|
||||||
|
'''
|
||||||
|
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
|
||||||
|
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
|
||||||
|
n_dim = tensor.dim()
|
||||||
|
if n_dim == 4:
|
||||||
|
n_img = len(tensor)
|
||||||
|
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
|
||||||
|
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
||||||
|
elif n_dim == 3:
|
||||||
|
img_np = tensor.numpy()
|
||||||
|
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
||||||
|
elif n_dim == 2:
|
||||||
|
img_np = tensor.numpy()
|
||||||
|
else:
|
||||||
|
raise TypeError(
|
||||||
|
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
|
||||||
|
if out_type == np.uint8:
|
||||||
|
img_np = (img_np * 255.0).round()
|
||||||
|
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
|
||||||
|
return img_np.astype(out_type)
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
# --------------------------------------------
|
||||||
|
# Augmentation, flipe and/or rotate
|
||||||
|
# --------------------------------------------
|
||||||
|
# The following two are enough.
|
||||||
|
# (1) augmet_img: numpy image of WxHxC or WxH
|
||||||
|
# (2) augment_img_tensor4: tensor image 1xCxWxH
|
||||||
|
# --------------------------------------------
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
def augment_img(img, mode=0):
|
||||||
|
'''Kai Zhang (github: https://github.com/cszn)
|
||||||
|
'''
|
||||||
|
if mode == 0:
|
||||||
|
return img
|
||||||
|
elif mode == 1:
|
||||||
|
return np.flipud(np.rot90(img))
|
||||||
|
elif mode == 2:
|
||||||
|
return np.flipud(img)
|
||||||
|
elif mode == 3:
|
||||||
|
return np.rot90(img, k=3)
|
||||||
|
elif mode == 4:
|
||||||
|
return np.flipud(np.rot90(img, k=2))
|
||||||
|
elif mode == 5:
|
||||||
|
return np.rot90(img)
|
||||||
|
elif mode == 6:
|
||||||
|
return np.rot90(img, k=2)
|
||||||
|
elif mode == 7:
|
||||||
|
return np.flipud(np.rot90(img, k=3))
|
||||||
|
|
||||||
|
|
||||||
|
def augment_img_tensor4(img, mode=0):
|
||||||
|
'''Kai Zhang (github: https://github.com/cszn)
|
||||||
|
'''
|
||||||
|
if mode == 0:
|
||||||
|
return img
|
||||||
|
elif mode == 1:
|
||||||
|
return img.rot90(1, [2, 3]).flip([2])
|
||||||
|
elif mode == 2:
|
||||||
|
return img.flip([2])
|
||||||
|
elif mode == 3:
|
||||||
|
return img.rot90(3, [2, 3])
|
||||||
|
elif mode == 4:
|
||||||
|
return img.rot90(2, [2, 3]).flip([2])
|
||||||
|
elif mode == 5:
|
||||||
|
return img.rot90(1, [2, 3])
|
||||||
|
elif mode == 6:
|
||||||
|
return img.rot90(2, [2, 3])
|
||||||
|
elif mode == 7:
|
||||||
|
return img.rot90(3, [2, 3]).flip([2])
|
||||||
|
|
||||||
|
|
||||||
|
def augment_img_tensor(img, mode=0):
|
||||||
|
'''Kai Zhang (github: https://github.com/cszn)
|
||||||
|
'''
|
||||||
|
img_size = img.size()
|
||||||
|
img_np = img.data.cpu().numpy()
|
||||||
|
if len(img_size) == 3:
|
||||||
|
img_np = np.transpose(img_np, (1, 2, 0))
|
||||||
|
elif len(img_size) == 4:
|
||||||
|
img_np = np.transpose(img_np, (2, 3, 1, 0))
|
||||||
|
img_np = augment_img(img_np, mode=mode)
|
||||||
|
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
|
||||||
|
if len(img_size) == 3:
|
||||||
|
img_tensor = img_tensor.permute(2, 0, 1)
|
||||||
|
elif len(img_size) == 4:
|
||||||
|
img_tensor = img_tensor.permute(3, 2, 0, 1)
|
||||||
|
|
||||||
|
return img_tensor.type_as(img)
|
||||||
|
|
||||||
|
|
||||||
|
def augment_img_np3(img, mode=0):
|
||||||
|
if mode == 0:
|
||||||
|
return img
|
||||||
|
elif mode == 1:
|
||||||
|
return img.transpose(1, 0, 2)
|
||||||
|
elif mode == 2:
|
||||||
|
return img[::-1, :, :]
|
||||||
|
elif mode == 3:
|
||||||
|
img = img[::-1, :, :]
|
||||||
|
img = img.transpose(1, 0, 2)
|
||||||
|
return img
|
||||||
|
elif mode == 4:
|
||||||
|
return img[:, ::-1, :]
|
||||||
|
elif mode == 5:
|
||||||
|
img = img[:, ::-1, :]
|
||||||
|
img = img.transpose(1, 0, 2)
|
||||||
|
return img
|
||||||
|
elif mode == 6:
|
||||||
|
img = img[:, ::-1, :]
|
||||||
|
img = img[::-1, :, :]
|
||||||
|
return img
|
||||||
|
elif mode == 7:
|
||||||
|
img = img[:, ::-1, :]
|
||||||
|
img = img[::-1, :, :]
|
||||||
|
img = img.transpose(1, 0, 2)
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def augment_imgs(img_list, hflip=True, rot=True):
|
||||||
|
# horizontal flip OR rotate
|
||||||
|
hflip = hflip and random.random() < 0.5
|
||||||
|
vflip = rot and random.random() < 0.5
|
||||||
|
rot90 = rot and random.random() < 0.5
|
||||||
|
|
||||||
|
def _augment(img):
|
||||||
|
if hflip:
|
||||||
|
img = img[:, ::-1, :]
|
||||||
|
if vflip:
|
||||||
|
img = img[::-1, :, :]
|
||||||
|
if rot90:
|
||||||
|
img = img.transpose(1, 0, 2)
|
||||||
|
return img
|
||||||
|
|
||||||
|
return [_augment(img) for img in img_list]
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
# --------------------------------------------
|
||||||
|
# modcrop and shave
|
||||||
|
# --------------------------------------------
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
def modcrop(img_in, scale):
|
||||||
|
# img_in: Numpy, HWC or HW
|
||||||
|
img = np.copy(img_in)
|
||||||
|
if img.ndim == 2:
|
||||||
|
H, W = img.shape
|
||||||
|
H_r, W_r = H % scale, W % scale
|
||||||
|
img = img[:H - H_r, :W - W_r]
|
||||||
|
elif img.ndim == 3:
|
||||||
|
H, W, C = img.shape
|
||||||
|
H_r, W_r = H % scale, W % scale
|
||||||
|
img = img[:H - H_r, :W - W_r, :]
|
||||||
|
else:
|
||||||
|
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def shave(img_in, border=0):
|
||||||
|
# img_in: Numpy, HWC or HW
|
||||||
|
img = np.copy(img_in)
|
||||||
|
h, w = img.shape[:2]
|
||||||
|
img = img[border:h-border, border:w-border]
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
# --------------------------------------------
|
||||||
|
# image processing process on numpy image
|
||||||
|
# channel_convert(in_c, tar_type, img_list):
|
||||||
|
# rgb2ycbcr(img, only_y=True):
|
||||||
|
# bgr2ycbcr(img, only_y=True):
|
||||||
|
# ycbcr2rgb(img):
|
||||||
|
# --------------------------------------------
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
def rgb2ycbcr(img, only_y=True):
|
||||||
|
'''same as matlab rgb2ycbcr
|
||||||
|
only_y: only return Y channel
|
||||||
|
Input:
|
||||||
|
uint8, [0, 255]
|
||||||
|
float, [0, 1]
|
||||||
|
'''
|
||||||
|
in_img_type = img.dtype
|
||||||
|
img.astype(np.float32)
|
||||||
|
if in_img_type != np.uint8:
|
||||||
|
img *= 255.
|
||||||
|
# convert
|
||||||
|
if only_y:
|
||||||
|
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
|
||||||
|
else:
|
||||||
|
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
|
||||||
|
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
|
||||||
|
if in_img_type == np.uint8:
|
||||||
|
rlt = rlt.round()
|
||||||
|
else:
|
||||||
|
rlt /= 255.
|
||||||
|
return rlt.astype(in_img_type)
|
||||||
|
|
||||||
|
|
||||||
|
def ycbcr2rgb(img):
|
||||||
|
'''same as matlab ycbcr2rgb
|
||||||
|
Input:
|
||||||
|
uint8, [0, 255]
|
||||||
|
float, [0, 1]
|
||||||
|
'''
|
||||||
|
in_img_type = img.dtype
|
||||||
|
img.astype(np.float32)
|
||||||
|
if in_img_type != np.uint8:
|
||||||
|
img *= 255.
|
||||||
|
# convert
|
||||||
|
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
|
||||||
|
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
|
||||||
|
if in_img_type == np.uint8:
|
||||||
|
rlt = rlt.round()
|
||||||
|
else:
|
||||||
|
rlt /= 255.
|
||||||
|
return rlt.astype(in_img_type)
|
||||||
|
|
||||||
|
|
||||||
|
def bgr2ycbcr(img, only_y=True):
|
||||||
|
'''bgr version of rgb2ycbcr
|
||||||
|
only_y: only return Y channel
|
||||||
|
Input:
|
||||||
|
uint8, [0, 255]
|
||||||
|
float, [0, 1]
|
||||||
|
'''
|
||||||
|
in_img_type = img.dtype
|
||||||
|
img.astype(np.float32)
|
||||||
|
if in_img_type != np.uint8:
|
||||||
|
img *= 255.
|
||||||
|
# convert
|
||||||
|
if only_y:
|
||||||
|
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
|
||||||
|
else:
|
||||||
|
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
|
||||||
|
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
|
||||||
|
if in_img_type == np.uint8:
|
||||||
|
rlt = rlt.round()
|
||||||
|
else:
|
||||||
|
rlt /= 255.
|
||||||
|
return rlt.astype(in_img_type)
|
||||||
|
|
||||||
|
|
||||||
|
def channel_convert(in_c, tar_type, img_list):
|
||||||
|
# conversion among BGR, gray and y
|
||||||
|
if in_c == 3 and tar_type == 'gray': # BGR to gray
|
||||||
|
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
|
||||||
|
return [np.expand_dims(img, axis=2) for img in gray_list]
|
||||||
|
elif in_c == 3 and tar_type == 'y': # BGR to y
|
||||||
|
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
|
||||||
|
return [np.expand_dims(img, axis=2) for img in y_list]
|
||||||
|
elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
|
||||||
|
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
|
||||||
|
else:
|
||||||
|
return img_list
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
# --------------------------------------------
|
||||||
|
# metric, PSNR and SSIM
|
||||||
|
# --------------------------------------------
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------
|
||||||
|
# PSNR
|
||||||
|
# --------------------------------------------
|
||||||
|
def calculate_psnr(img1, img2, border=0):
|
||||||
|
# img1 and img2 have range [0, 255]
|
||||||
|
#img1 = img1.squeeze()
|
||||||
|
#img2 = img2.squeeze()
|
||||||
|
if not img1.shape == img2.shape:
|
||||||
|
raise ValueError('Input images must have the same dimensions.')
|
||||||
|
h, w = img1.shape[:2]
|
||||||
|
img1 = img1[border:h-border, border:w-border]
|
||||||
|
img2 = img2[border:h-border, border:w-border]
|
||||||
|
|
||||||
|
img1 = img1.astype(np.float64)
|
||||||
|
img2 = img2.astype(np.float64)
|
||||||
|
mse = np.mean((img1 - img2)**2)
|
||||||
|
if mse == 0:
|
||||||
|
return float('inf')
|
||||||
|
return 20 * math.log10(255.0 / math.sqrt(mse))
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------
|
||||||
|
# SSIM
|
||||||
|
# --------------------------------------------
|
||||||
|
def calculate_ssim(img1, img2, border=0):
|
||||||
|
'''calculate SSIM
|
||||||
|
the same outputs as MATLAB's
|
||||||
|
img1, img2: [0, 255]
|
||||||
|
'''
|
||||||
|
#img1 = img1.squeeze()
|
||||||
|
#img2 = img2.squeeze()
|
||||||
|
if not img1.shape == img2.shape:
|
||||||
|
raise ValueError('Input images must have the same dimensions.')
|
||||||
|
h, w = img1.shape[:2]
|
||||||
|
img1 = img1[border:h-border, border:w-border]
|
||||||
|
img2 = img2[border:h-border, border:w-border]
|
||||||
|
|
||||||
|
if img1.ndim == 2:
|
||||||
|
return ssim(img1, img2)
|
||||||
|
elif img1.ndim == 3:
|
||||||
|
if img1.shape[2] == 3:
|
||||||
|
ssims = []
|
||||||
|
for i in range(3):
|
||||||
|
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
|
||||||
|
return np.array(ssims).mean()
|
||||||
|
elif img1.shape[2] == 1:
|
||||||
|
return ssim(np.squeeze(img1), np.squeeze(img2))
|
||||||
|
else:
|
||||||
|
raise ValueError('Wrong input image dimensions.')
|
||||||
|
|
||||||
|
|
||||||
|
def ssim(img1, img2):
|
||||||
|
C1 = (0.01 * 255)**2
|
||||||
|
C2 = (0.03 * 255)**2
|
||||||
|
|
||||||
|
img1 = img1.astype(np.float64)
|
||||||
|
img2 = img2.astype(np.float64)
|
||||||
|
kernel = cv2.getGaussianKernel(11, 1.5)
|
||||||
|
window = np.outer(kernel, kernel.transpose())
|
||||||
|
|
||||||
|
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
||||||
|
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
||||||
|
mu1_sq = mu1**2
|
||||||
|
mu2_sq = mu2**2
|
||||||
|
mu1_mu2 = mu1 * mu2
|
||||||
|
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
||||||
|
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
||||||
|
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
||||||
|
|
||||||
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
||||||
|
(sigma1_sq + sigma2_sq + C2))
|
||||||
|
return ssim_map.mean()
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
# --------------------------------------------
|
||||||
|
# matlab's bicubic imresize (numpy and torch) [0, 1]
|
||||||
|
# --------------------------------------------
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
# matlab 'imresize' function, now only support 'bicubic'
|
||||||
|
def cubic(x):
|
||||||
|
absx = torch.abs(x)
|
||||||
|
absx2 = absx**2
|
||||||
|
absx3 = absx**3
|
||||||
|
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
|
||||||
|
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
|
||||||
|
if (scale < 1) and (antialiasing):
|
||||||
|
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
|
||||||
|
kernel_width = kernel_width / scale
|
||||||
|
|
||||||
|
# Output-space coordinates
|
||||||
|
x = torch.linspace(1, out_length, out_length)
|
||||||
|
|
||||||
|
# Input-space coordinates. Calculate the inverse mapping such that 0.5
|
||||||
|
# in output space maps to 0.5 in input space, and 0.5+scale in output
|
||||||
|
# space maps to 1.5 in input space.
|
||||||
|
u = x / scale + 0.5 * (1 - 1 / scale)
|
||||||
|
|
||||||
|
# What is the left-most pixel that can be involved in the computation?
|
||||||
|
left = torch.floor(u - kernel_width / 2)
|
||||||
|
|
||||||
|
# What is the maximum number of pixels that can be involved in the
|
||||||
|
# computation? Note: it's OK to use an extra pixel here; if the
|
||||||
|
# corresponding weights are all zero, it will be eliminated at the end
|
||||||
|
# of this function.
|
||||||
|
P = math.ceil(kernel_width) + 2
|
||||||
|
|
||||||
|
# The indices of the input pixels involved in computing the k-th output
|
||||||
|
# pixel are in row k of the indices matrix.
|
||||||
|
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
|
||||||
|
1, P).expand(out_length, P)
|
||||||
|
|
||||||
|
# The weights used to compute the k-th output pixel are in row k of the
|
||||||
|
# weights matrix.
|
||||||
|
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
|
||||||
|
# apply cubic kernel
|
||||||
|
if (scale < 1) and (antialiasing):
|
||||||
|
weights = scale * cubic(distance_to_center * scale)
|
||||||
|
else:
|
||||||
|
weights = cubic(distance_to_center)
|
||||||
|
# Normalize the weights matrix so that each row sums to 1.
|
||||||
|
weights_sum = torch.sum(weights, 1).view(out_length, 1)
|
||||||
|
weights = weights / weights_sum.expand(out_length, P)
|
||||||
|
|
||||||
|
# If a column in weights is all zero, get rid of it. only consider the first and last column.
|
||||||
|
weights_zero_tmp = torch.sum((weights == 0), 0)
|
||||||
|
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
|
||||||
|
indices = indices.narrow(1, 1, P - 2)
|
||||||
|
weights = weights.narrow(1, 1, P - 2)
|
||||||
|
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
|
||||||
|
indices = indices.narrow(1, 0, P - 2)
|
||||||
|
weights = weights.narrow(1, 0, P - 2)
|
||||||
|
weights = weights.contiguous()
|
||||||
|
indices = indices.contiguous()
|
||||||
|
sym_len_s = -indices.min() + 1
|
||||||
|
sym_len_e = indices.max() - in_length
|
||||||
|
indices = indices + sym_len_s - 1
|
||||||
|
return weights, indices, int(sym_len_s), int(sym_len_e)
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------
|
||||||
|
# imresize for tensor image [0, 1]
|
||||||
|
# --------------------------------------------
|
||||||
|
def imresize(img, scale, antialiasing=True):
|
||||||
|
# Now the scale should be the same for H and W
|
||||||
|
# input: img: pytorch tensor, CHW or HW [0,1]
|
||||||
|
# output: CHW or HW [0,1] w/o round
|
||||||
|
need_squeeze = True if img.dim() == 2 else False
|
||||||
|
if need_squeeze:
|
||||||
|
img.unsqueeze_(0)
|
||||||
|
in_C, in_H, in_W = img.size()
|
||||||
|
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
||||||
|
kernel_width = 4
|
||||||
|
kernel = 'cubic'
|
||||||
|
|
||||||
|
# Return the desired dimension order for performing the resize. The
|
||||||
|
# strategy is to perform the resize first along the dimension with the
|
||||||
|
# smallest scale factor.
|
||||||
|
# Now we do not support this.
|
||||||
|
|
||||||
|
# get weights and indices
|
||||||
|
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
||||||
|
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
||||||
|
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
||||||
|
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
||||||
|
# process H dimension
|
||||||
|
# symmetric copying
|
||||||
|
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
|
||||||
|
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
|
||||||
|
|
||||||
|
sym_patch = img[:, :sym_len_Hs, :]
|
||||||
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
||||||
|
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
||||||
|
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
|
||||||
|
|
||||||
|
sym_patch = img[:, -sym_len_He:, :]
|
||||||
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
||||||
|
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
||||||
|
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
||||||
|
|
||||||
|
out_1 = torch.FloatTensor(in_C, out_H, in_W)
|
||||||
|
kernel_width = weights_H.size(1)
|
||||||
|
for i in range(out_H):
|
||||||
|
idx = int(indices_H[i][0])
|
||||||
|
for j in range(out_C):
|
||||||
|
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
|
||||||
|
|
||||||
|
# process W dimension
|
||||||
|
# symmetric copying
|
||||||
|
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
|
||||||
|
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
|
||||||
|
|
||||||
|
sym_patch = out_1[:, :, :sym_len_Ws]
|
||||||
|
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
||||||
|
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
||||||
|
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
|
||||||
|
|
||||||
|
sym_patch = out_1[:, :, -sym_len_We:]
|
||||||
|
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
||||||
|
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
||||||
|
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
||||||
|
|
||||||
|
out_2 = torch.FloatTensor(in_C, out_H, out_W)
|
||||||
|
kernel_width = weights_W.size(1)
|
||||||
|
for i in range(out_W):
|
||||||
|
idx = int(indices_W[i][0])
|
||||||
|
for j in range(out_C):
|
||||||
|
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
|
||||||
|
if need_squeeze:
|
||||||
|
out_2.squeeze_()
|
||||||
|
return out_2
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------
|
||||||
|
# imresize for numpy image [0, 1]
|
||||||
|
# --------------------------------------------
|
||||||
|
def imresize_np(img, scale, antialiasing=True):
|
||||||
|
# Now the scale should be the same for H and W
|
||||||
|
# input: img: Numpy, HWC or HW [0,1]
|
||||||
|
# output: HWC or HW [0,1] w/o round
|
||||||
|
img = torch.from_numpy(img)
|
||||||
|
need_squeeze = True if img.dim() == 2 else False
|
||||||
|
if need_squeeze:
|
||||||
|
img.unsqueeze_(2)
|
||||||
|
|
||||||
|
in_H, in_W, in_C = img.size()
|
||||||
|
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
||||||
|
kernel_width = 4
|
||||||
|
kernel = 'cubic'
|
||||||
|
|
||||||
|
# Return the desired dimension order for performing the resize. The
|
||||||
|
# strategy is to perform the resize first along the dimension with the
|
||||||
|
# smallest scale factor.
|
||||||
|
# Now we do not support this.
|
||||||
|
|
||||||
|
# get weights and indices
|
||||||
|
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
||||||
|
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
||||||
|
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
||||||
|
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
||||||
|
# process H dimension
|
||||||
|
# symmetric copying
|
||||||
|
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
|
||||||
|
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
|
||||||
|
|
||||||
|
sym_patch = img[:sym_len_Hs, :, :]
|
||||||
|
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
||||||
|
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
||||||
|
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
|
||||||
|
|
||||||
|
sym_patch = img[-sym_len_He:, :, :]
|
||||||
|
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
||||||
|
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
||||||
|
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
||||||
|
|
||||||
|
out_1 = torch.FloatTensor(out_H, in_W, in_C)
|
||||||
|
kernel_width = weights_H.size(1)
|
||||||
|
for i in range(out_H):
|
||||||
|
idx = int(indices_H[i][0])
|
||||||
|
for j in range(out_C):
|
||||||
|
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
|
||||||
|
|
||||||
|
# process W dimension
|
||||||
|
# symmetric copying
|
||||||
|
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
|
||||||
|
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
|
||||||
|
|
||||||
|
sym_patch = out_1[:, :sym_len_Ws, :]
|
||||||
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
||||||
|
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
||||||
|
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
|
||||||
|
|
||||||
|
sym_patch = out_1[:, -sym_len_We:, :]
|
||||||
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
||||||
|
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
||||||
|
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
||||||
|
|
||||||
|
out_2 = torch.FloatTensor(out_H, out_W, in_C)
|
||||||
|
kernel_width = weights_W.size(1)
|
||||||
|
for i in range(out_W):
|
||||||
|
idx = int(indices_W[i][0])
|
||||||
|
for j in range(out_C):
|
||||||
|
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
|
||||||
|
if need_squeeze:
|
||||||
|
out_2.squeeze_()
|
||||||
|
|
||||||
|
return out_2.numpy()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
print('---')
|
||||||
|
# img = imread_uint('test.bmp', 3)
|
||||||
|
# img = uint2single(img)
|
||||||
|
# img_bicubic = imresize_np(img, 1/4)
|
||||||
@@ -0,0 +1 @@
|
|||||||
|
from ldm.modules.losses.contperceptual import LPIPSWithDiscriminator
|
||||||
@@ -0,0 +1,111 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no?
|
||||||
|
|
||||||
|
|
||||||
|
class LPIPSWithDiscriminator(nn.Module):
|
||||||
|
def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
|
||||||
|
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
||||||
|
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
||||||
|
disc_loss="hinge"):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
assert disc_loss in ["hinge", "vanilla"]
|
||||||
|
self.kl_weight = kl_weight
|
||||||
|
self.pixel_weight = pixelloss_weight
|
||||||
|
self.perceptual_loss = LPIPS().eval()
|
||||||
|
self.perceptual_weight = perceptual_weight
|
||||||
|
# output log variance
|
||||||
|
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
|
||||||
|
|
||||||
|
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
||||||
|
n_layers=disc_num_layers,
|
||||||
|
use_actnorm=use_actnorm
|
||||||
|
).apply(weights_init)
|
||||||
|
self.discriminator_iter_start = disc_start
|
||||||
|
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
|
||||||
|
self.disc_factor = disc_factor
|
||||||
|
self.discriminator_weight = disc_weight
|
||||||
|
self.disc_conditional = disc_conditional
|
||||||
|
|
||||||
|
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
||||||
|
if last_layer is not None:
|
||||||
|
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
||||||
|
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
||||||
|
else:
|
||||||
|
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
||||||
|
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
||||||
|
|
||||||
|
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
||||||
|
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
||||||
|
d_weight = d_weight * self.discriminator_weight
|
||||||
|
return d_weight
|
||||||
|
|
||||||
|
def forward(self, inputs, reconstructions, posteriors, optimizer_idx,
|
||||||
|
global_step, last_layer=None, cond=None, split="train",
|
||||||
|
weights=None):
|
||||||
|
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
||||||
|
if self.perceptual_weight > 0:
|
||||||
|
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
||||||
|
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
||||||
|
|
||||||
|
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
|
||||||
|
weighted_nll_loss = nll_loss
|
||||||
|
if weights is not None:
|
||||||
|
weighted_nll_loss = weights*nll_loss
|
||||||
|
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
|
||||||
|
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
||||||
|
kl_loss = posteriors.kl()
|
||||||
|
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
||||||
|
|
||||||
|
# now the GAN part
|
||||||
|
if optimizer_idx == 0:
|
||||||
|
# generator update
|
||||||
|
if cond is None:
|
||||||
|
assert not self.disc_conditional
|
||||||
|
logits_fake = self.discriminator(reconstructions.contiguous())
|
||||||
|
else:
|
||||||
|
assert self.disc_conditional
|
||||||
|
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
||||||
|
g_loss = -torch.mean(logits_fake)
|
||||||
|
|
||||||
|
if self.disc_factor > 0.0:
|
||||||
|
try:
|
||||||
|
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
||||||
|
except RuntimeError:
|
||||||
|
assert not self.training
|
||||||
|
d_weight = torch.tensor(0.0)
|
||||||
|
else:
|
||||||
|
d_weight = torch.tensor(0.0)
|
||||||
|
|
||||||
|
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
||||||
|
loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
|
||||||
|
|
||||||
|
log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
|
||||||
|
"{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(),
|
||||||
|
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
||||||
|
"{}/d_weight".format(split): d_weight.detach(),
|
||||||
|
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
||||||
|
"{}/g_loss".format(split): g_loss.detach().mean(),
|
||||||
|
}
|
||||||
|
return loss, log
|
||||||
|
|
||||||
|
if optimizer_idx == 1:
|
||||||
|
# second pass for discriminator update
|
||||||
|
if cond is None:
|
||||||
|
logits_real = self.discriminator(inputs.contiguous().detach())
|
||||||
|
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
||||||
|
else:
|
||||||
|
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
||||||
|
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
||||||
|
|
||||||
|
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
||||||
|
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
||||||
|
|
||||||
|
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
||||||
|
"{}/logits_real".format(split): logits_real.detach().mean(),
|
||||||
|
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
||||||
|
}
|
||||||
|
return d_loss, log
|
||||||
|
|
||||||
167
OCR_earsing/latent_diffusion/ldm/modules/losses/vqperceptual.py
Normal file
167
OCR_earsing/latent_diffusion/ldm/modules/losses/vqperceptual.py
Normal file
@@ -0,0 +1,167 @@
|
|||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from einops import repeat
|
||||||
|
|
||||||
|
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
|
||||||
|
from taming.modules.losses.lpips import LPIPS
|
||||||
|
from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
|
||||||
|
|
||||||
|
|
||||||
|
def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
|
||||||
|
assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
|
||||||
|
loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
|
||||||
|
loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
|
||||||
|
loss_real = (weights * loss_real).sum() / weights.sum()
|
||||||
|
loss_fake = (weights * loss_fake).sum() / weights.sum()
|
||||||
|
d_loss = 0.5 * (loss_real + loss_fake)
|
||||||
|
return d_loss
|
||||||
|
|
||||||
|
def adopt_weight(weight, global_step, threshold=0, value=0.):
|
||||||
|
if global_step < threshold:
|
||||||
|
weight = value
|
||||||
|
return weight
|
||||||
|
|
||||||
|
|
||||||
|
def measure_perplexity(predicted_indices, n_embed):
|
||||||
|
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
|
||||||
|
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
|
||||||
|
encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
|
||||||
|
avg_probs = encodings.mean(0)
|
||||||
|
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
|
||||||
|
cluster_use = torch.sum(avg_probs > 0)
|
||||||
|
return perplexity, cluster_use
|
||||||
|
|
||||||
|
def l1(x, y):
|
||||||
|
return torch.abs(x-y)
|
||||||
|
|
||||||
|
|
||||||
|
def l2(x, y):
|
||||||
|
return torch.pow((x-y), 2)
|
||||||
|
|
||||||
|
|
||||||
|
class VQLPIPSWithDiscriminator(nn.Module):
|
||||||
|
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
|
||||||
|
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
||||||
|
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
||||||
|
disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
|
||||||
|
pixel_loss="l1"):
|
||||||
|
super().__init__()
|
||||||
|
assert disc_loss in ["hinge", "vanilla"]
|
||||||
|
assert perceptual_loss in ["lpips", "clips", "dists"]
|
||||||
|
assert pixel_loss in ["l1", "l2"]
|
||||||
|
self.codebook_weight = codebook_weight
|
||||||
|
self.pixel_weight = pixelloss_weight
|
||||||
|
if perceptual_loss == "lpips":
|
||||||
|
print(f"{self.__class__.__name__}: Running with LPIPS.")
|
||||||
|
self.perceptual_loss = LPIPS().eval()
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
|
||||||
|
self.perceptual_weight = perceptual_weight
|
||||||
|
|
||||||
|
if pixel_loss == "l1":
|
||||||
|
self.pixel_loss = l1
|
||||||
|
else:
|
||||||
|
self.pixel_loss = l2
|
||||||
|
|
||||||
|
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
||||||
|
n_layers=disc_num_layers,
|
||||||
|
use_actnorm=use_actnorm,
|
||||||
|
ndf=disc_ndf
|
||||||
|
).apply(weights_init)
|
||||||
|
self.discriminator_iter_start = disc_start
|
||||||
|
if disc_loss == "hinge":
|
||||||
|
self.disc_loss = hinge_d_loss
|
||||||
|
elif disc_loss == "vanilla":
|
||||||
|
self.disc_loss = vanilla_d_loss
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
|
||||||
|
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
|
||||||
|
self.disc_factor = disc_factor
|
||||||
|
self.discriminator_weight = disc_weight
|
||||||
|
self.disc_conditional = disc_conditional
|
||||||
|
self.n_classes = n_classes
|
||||||
|
|
||||||
|
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
||||||
|
if last_layer is not None:
|
||||||
|
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
||||||
|
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
||||||
|
else:
|
||||||
|
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
||||||
|
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
||||||
|
|
||||||
|
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
||||||
|
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
||||||
|
d_weight = d_weight * self.discriminator_weight
|
||||||
|
return d_weight
|
||||||
|
|
||||||
|
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
|
||||||
|
global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
|
||||||
|
if not exists(codebook_loss):
|
||||||
|
codebook_loss = torch.tensor([0.]).to(inputs.device)
|
||||||
|
#rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
||||||
|
rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
|
||||||
|
if self.perceptual_weight > 0:
|
||||||
|
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
||||||
|
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
||||||
|
else:
|
||||||
|
p_loss = torch.tensor([0.0])
|
||||||
|
|
||||||
|
nll_loss = rec_loss
|
||||||
|
#nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
||||||
|
nll_loss = torch.mean(nll_loss)
|
||||||
|
|
||||||
|
# now the GAN part
|
||||||
|
if optimizer_idx == 0:
|
||||||
|
# generator update
|
||||||
|
if cond is None:
|
||||||
|
assert not self.disc_conditional
|
||||||
|
logits_fake = self.discriminator(reconstructions.contiguous())
|
||||||
|
else:
|
||||||
|
assert self.disc_conditional
|
||||||
|
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
||||||
|
g_loss = -torch.mean(logits_fake)
|
||||||
|
|
||||||
|
try:
|
||||||
|
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
||||||
|
except RuntimeError:
|
||||||
|
assert not self.training
|
||||||
|
d_weight = torch.tensor(0.0)
|
||||||
|
|
||||||
|
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
||||||
|
loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
|
||||||
|
|
||||||
|
log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
|
||||||
|
"{}/quant_loss".format(split): codebook_loss.detach().mean(),
|
||||||
|
"{}/nll_loss".format(split): nll_loss.detach().mean(),
|
||||||
|
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
||||||
|
"{}/p_loss".format(split): p_loss.detach().mean(),
|
||||||
|
"{}/d_weight".format(split): d_weight.detach(),
|
||||||
|
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
||||||
|
"{}/g_loss".format(split): g_loss.detach().mean(),
|
||||||
|
}
|
||||||
|
if predicted_indices is not None:
|
||||||
|
assert self.n_classes is not None
|
||||||
|
with torch.no_grad():
|
||||||
|
perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
|
||||||
|
log[f"{split}/perplexity"] = perplexity
|
||||||
|
log[f"{split}/cluster_usage"] = cluster_usage
|
||||||
|
return loss, log
|
||||||
|
|
||||||
|
if optimizer_idx == 1:
|
||||||
|
# second pass for discriminator update
|
||||||
|
if cond is None:
|
||||||
|
logits_real = self.discriminator(inputs.contiguous().detach())
|
||||||
|
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
||||||
|
else:
|
||||||
|
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
||||||
|
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
||||||
|
|
||||||
|
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
||||||
|
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
||||||
|
|
||||||
|
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
||||||
|
"{}/logits_real".format(split): logits_real.detach().mean(),
|
||||||
|
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
||||||
|
}
|
||||||
|
return d_loss, log
|
||||||
641
OCR_earsing/latent_diffusion/ldm/modules/x_transformer.py
Normal file
641
OCR_earsing/latent_diffusion/ldm/modules/x_transformer.py
Normal file
@@ -0,0 +1,641 @@
|
|||||||
|
"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
|
||||||
|
import torch
|
||||||
|
from torch import nn, einsum
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from functools import partial
|
||||||
|
from inspect import isfunction
|
||||||
|
from collections import namedtuple
|
||||||
|
from einops import rearrange, repeat, reduce
|
||||||
|
|
||||||
|
# constants
|
||||||
|
|
||||||
|
DEFAULT_DIM_HEAD = 64
|
||||||
|
|
||||||
|
Intermediates = namedtuple('Intermediates', [
|
||||||
|
'pre_softmax_attn',
|
||||||
|
'post_softmax_attn'
|
||||||
|
])
|
||||||
|
|
||||||
|
LayerIntermediates = namedtuple('Intermediates', [
|
||||||
|
'hiddens',
|
||||||
|
'attn_intermediates'
|
||||||
|
])
|
||||||
|
|
||||||
|
|
||||||
|
class AbsolutePositionalEmbedding(nn.Module):
|
||||||
|
def __init__(self, dim, max_seq_len):
|
||||||
|
super().__init__()
|
||||||
|
self.emb = nn.Embedding(max_seq_len, dim)
|
||||||
|
self.init_()
|
||||||
|
|
||||||
|
def init_(self):
|
||||||
|
nn.init.normal_(self.emb.weight, std=0.02)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
n = torch.arange(x.shape[1], device=x.device)
|
||||||
|
return self.emb(n)[None, :, :]
|
||||||
|
|
||||||
|
|
||||||
|
class FixedPositionalEmbedding(nn.Module):
|
||||||
|
def __init__(self, dim):
|
||||||
|
super().__init__()
|
||||||
|
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
||||||
|
self.register_buffer('inv_freq', inv_freq)
|
||||||
|
|
||||||
|
def forward(self, x, seq_dim=1, offset=0):
|
||||||
|
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
|
||||||
|
sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
|
||||||
|
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
||||||
|
return emb[None, :, :]
|
||||||
|
|
||||||
|
|
||||||
|
# helpers
|
||||||
|
|
||||||
|
def exists(val):
|
||||||
|
return val is not None
|
||||||
|
|
||||||
|
|
||||||
|
def default(val, d):
|
||||||
|
if exists(val):
|
||||||
|
return val
|
||||||
|
return d() if isfunction(d) else d
|
||||||
|
|
||||||
|
|
||||||
|
def always(val):
|
||||||
|
def inner(*args, **kwargs):
|
||||||
|
return val
|
||||||
|
return inner
|
||||||
|
|
||||||
|
|
||||||
|
def not_equals(val):
|
||||||
|
def inner(x):
|
||||||
|
return x != val
|
||||||
|
return inner
|
||||||
|
|
||||||
|
|
||||||
|
def equals(val):
|
||||||
|
def inner(x):
|
||||||
|
return x == val
|
||||||
|
return inner
|
||||||
|
|
||||||
|
|
||||||
|
def max_neg_value(tensor):
|
||||||
|
return -torch.finfo(tensor.dtype).max
|
||||||
|
|
||||||
|
|
||||||
|
# keyword argument helpers
|
||||||
|
|
||||||
|
def pick_and_pop(keys, d):
|
||||||
|
values = list(map(lambda key: d.pop(key), keys))
|
||||||
|
return dict(zip(keys, values))
|
||||||
|
|
||||||
|
|
||||||
|
def group_dict_by_key(cond, d):
|
||||||
|
return_val = [dict(), dict()]
|
||||||
|
for key in d.keys():
|
||||||
|
match = bool(cond(key))
|
||||||
|
ind = int(not match)
|
||||||
|
return_val[ind][key] = d[key]
|
||||||
|
return (*return_val,)
|
||||||
|
|
||||||
|
|
||||||
|
def string_begins_with(prefix, str):
|
||||||
|
return str.startswith(prefix)
|
||||||
|
|
||||||
|
|
||||||
|
def group_by_key_prefix(prefix, d):
|
||||||
|
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
||||||
|
|
||||||
|
|
||||||
|
def groupby_prefix_and_trim(prefix, d):
|
||||||
|
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
||||||
|
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
||||||
|
return kwargs_without_prefix, kwargs
|
||||||
|
|
||||||
|
|
||||||
|
# classes
|
||||||
|
class Scale(nn.Module):
|
||||||
|
def __init__(self, value, fn):
|
||||||
|
super().__init__()
|
||||||
|
self.value = value
|
||||||
|
self.fn = fn
|
||||||
|
|
||||||
|
def forward(self, x, **kwargs):
|
||||||
|
x, *rest = self.fn(x, **kwargs)
|
||||||
|
return (x * self.value, *rest)
|
||||||
|
|
||||||
|
|
||||||
|
class Rezero(nn.Module):
|
||||||
|
def __init__(self, fn):
|
||||||
|
super().__init__()
|
||||||
|
self.fn = fn
|
||||||
|
self.g = nn.Parameter(torch.zeros(1))
|
||||||
|
|
||||||
|
def forward(self, x, **kwargs):
|
||||||
|
x, *rest = self.fn(x, **kwargs)
|
||||||
|
return (x * self.g, *rest)
|
||||||
|
|
||||||
|
|
||||||
|
class ScaleNorm(nn.Module):
|
||||||
|
def __init__(self, dim, eps=1e-5):
|
||||||
|
super().__init__()
|
||||||
|
self.scale = dim ** -0.5
|
||||||
|
self.eps = eps
|
||||||
|
self.g = nn.Parameter(torch.ones(1))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
||||||
|
return x / norm.clamp(min=self.eps) * self.g
|
||||||
|
|
||||||
|
|
||||||
|
class RMSNorm(nn.Module):
|
||||||
|
def __init__(self, dim, eps=1e-8):
|
||||||
|
super().__init__()
|
||||||
|
self.scale = dim ** -0.5
|
||||||
|
self.eps = eps
|
||||||
|
self.g = nn.Parameter(torch.ones(dim))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
||||||
|
return x / norm.clamp(min=self.eps) * self.g
|
||||||
|
|
||||||
|
|
||||||
|
class Residual(nn.Module):
|
||||||
|
def forward(self, x, residual):
|
||||||
|
return x + residual
|
||||||
|
|
||||||
|
|
||||||
|
class GRUGating(nn.Module):
|
||||||
|
def __init__(self, dim):
|
||||||
|
super().__init__()
|
||||||
|
self.gru = nn.GRUCell(dim, dim)
|
||||||
|
|
||||||
|
def forward(self, x, residual):
|
||||||
|
gated_output = self.gru(
|
||||||
|
rearrange(x, 'b n d -> (b n) d'),
|
||||||
|
rearrange(residual, 'b n d -> (b n) d')
|
||||||
|
)
|
||||||
|
|
||||||
|
return gated_output.reshape_as(x)
|
||||||
|
|
||||||
|
|
||||||
|
# feedforward
|
||||||
|
|
||||||
|
class GEGLU(nn.Module):
|
||||||
|
def __init__(self, dim_in, dim_out):
|
||||||
|
super().__init__()
|
||||||
|
self.proj = nn.Linear(dim_in, dim_out * 2)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||||
|
return x * F.gelu(gate)
|
||||||
|
|
||||||
|
|
||||||
|
class FeedForward(nn.Module):
|
||||||
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
||||||
|
super().__init__()
|
||||||
|
inner_dim = int(dim * mult)
|
||||||
|
dim_out = default(dim_out, dim)
|
||||||
|
project_in = nn.Sequential(
|
||||||
|
nn.Linear(dim, inner_dim),
|
||||||
|
nn.GELU()
|
||||||
|
) if not glu else GEGLU(dim, inner_dim)
|
||||||
|
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
project_in,
|
||||||
|
nn.Dropout(dropout),
|
||||||
|
nn.Linear(inner_dim, dim_out)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.net(x)
|
||||||
|
|
||||||
|
|
||||||
|
# attention.
|
||||||
|
class Attention(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim,
|
||||||
|
dim_head=DEFAULT_DIM_HEAD,
|
||||||
|
heads=8,
|
||||||
|
causal=False,
|
||||||
|
mask=None,
|
||||||
|
talking_heads=False,
|
||||||
|
sparse_topk=None,
|
||||||
|
use_entmax15=False,
|
||||||
|
num_mem_kv=0,
|
||||||
|
dropout=0.,
|
||||||
|
on_attn=False
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
if use_entmax15:
|
||||||
|
raise NotImplementedError("Check out entmax activation instead of softmax activation!")
|
||||||
|
self.scale = dim_head ** -0.5
|
||||||
|
self.heads = heads
|
||||||
|
self.causal = causal
|
||||||
|
self.mask = mask
|
||||||
|
|
||||||
|
inner_dim = dim_head * heads
|
||||||
|
|
||||||
|
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
||||||
|
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
||||||
|
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
# talking heads
|
||||||
|
self.talking_heads = talking_heads
|
||||||
|
if talking_heads:
|
||||||
|
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
||||||
|
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
||||||
|
|
||||||
|
# explicit topk sparse attention
|
||||||
|
self.sparse_topk = sparse_topk
|
||||||
|
|
||||||
|
# entmax
|
||||||
|
#self.attn_fn = entmax15 if use_entmax15 else F.softmax
|
||||||
|
self.attn_fn = F.softmax
|
||||||
|
|
||||||
|
# add memory key / values
|
||||||
|
self.num_mem_kv = num_mem_kv
|
||||||
|
if num_mem_kv > 0:
|
||||||
|
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
||||||
|
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
||||||
|
|
||||||
|
# attention on attention
|
||||||
|
self.attn_on_attn = on_attn
|
||||||
|
self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x,
|
||||||
|
context=None,
|
||||||
|
mask=None,
|
||||||
|
context_mask=None,
|
||||||
|
rel_pos=None,
|
||||||
|
sinusoidal_emb=None,
|
||||||
|
prev_attn=None,
|
||||||
|
mem=None
|
||||||
|
):
|
||||||
|
b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
|
||||||
|
kv_input = default(context, x)
|
||||||
|
|
||||||
|
q_input = x
|
||||||
|
k_input = kv_input
|
||||||
|
v_input = kv_input
|
||||||
|
|
||||||
|
if exists(mem):
|
||||||
|
k_input = torch.cat((mem, k_input), dim=-2)
|
||||||
|
v_input = torch.cat((mem, v_input), dim=-2)
|
||||||
|
|
||||||
|
if exists(sinusoidal_emb):
|
||||||
|
# in shortformer, the query would start at a position offset depending on the past cached memory
|
||||||
|
offset = k_input.shape[-2] - q_input.shape[-2]
|
||||||
|
q_input = q_input + sinusoidal_emb(q_input, offset=offset)
|
||||||
|
k_input = k_input + sinusoidal_emb(k_input)
|
||||||
|
|
||||||
|
q = self.to_q(q_input)
|
||||||
|
k = self.to_k(k_input)
|
||||||
|
v = self.to_v(v_input)
|
||||||
|
|
||||||
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
||||||
|
|
||||||
|
input_mask = None
|
||||||
|
if any(map(exists, (mask, context_mask))):
|
||||||
|
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
|
||||||
|
k_mask = q_mask if not exists(context) else context_mask
|
||||||
|
k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
|
||||||
|
q_mask = rearrange(q_mask, 'b i -> b () i ()')
|
||||||
|
k_mask = rearrange(k_mask, 'b j -> b () () j')
|
||||||
|
input_mask = q_mask * k_mask
|
||||||
|
|
||||||
|
if self.num_mem_kv > 0:
|
||||||
|
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
|
||||||
|
k = torch.cat((mem_k, k), dim=-2)
|
||||||
|
v = torch.cat((mem_v, v), dim=-2)
|
||||||
|
if exists(input_mask):
|
||||||
|
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
|
||||||
|
|
||||||
|
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||||
|
mask_value = max_neg_value(dots)
|
||||||
|
|
||||||
|
if exists(prev_attn):
|
||||||
|
dots = dots + prev_attn
|
||||||
|
|
||||||
|
pre_softmax_attn = dots
|
||||||
|
|
||||||
|
if talking_heads:
|
||||||
|
dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
|
||||||
|
|
||||||
|
if exists(rel_pos):
|
||||||
|
dots = rel_pos(dots)
|
||||||
|
|
||||||
|
if exists(input_mask):
|
||||||
|
dots.masked_fill_(~input_mask, mask_value)
|
||||||
|
del input_mask
|
||||||
|
|
||||||
|
if self.causal:
|
||||||
|
i, j = dots.shape[-2:]
|
||||||
|
r = torch.arange(i, device=device)
|
||||||
|
mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
|
||||||
|
mask = F.pad(mask, (j - i, 0), value=False)
|
||||||
|
dots.masked_fill_(mask, mask_value)
|
||||||
|
del mask
|
||||||
|
|
||||||
|
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
|
||||||
|
top, _ = dots.topk(self.sparse_topk, dim=-1)
|
||||||
|
vk = top[..., -1].unsqueeze(-1).expand_as(dots)
|
||||||
|
mask = dots < vk
|
||||||
|
dots.masked_fill_(mask, mask_value)
|
||||||
|
del mask
|
||||||
|
|
||||||
|
attn = self.attn_fn(dots, dim=-1)
|
||||||
|
post_softmax_attn = attn
|
||||||
|
|
||||||
|
attn = self.dropout(attn)
|
||||||
|
|
||||||
|
if talking_heads:
|
||||||
|
attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
|
||||||
|
|
||||||
|
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||||
|
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||||
|
|
||||||
|
intermediates = Intermediates(
|
||||||
|
pre_softmax_attn=pre_softmax_attn,
|
||||||
|
post_softmax_attn=post_softmax_attn
|
||||||
|
)
|
||||||
|
|
||||||
|
return self.to_out(out), intermediates
|
||||||
|
|
||||||
|
|
||||||
|
class AttentionLayers(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim,
|
||||||
|
depth,
|
||||||
|
heads=8,
|
||||||
|
causal=False,
|
||||||
|
cross_attend=False,
|
||||||
|
only_cross=False,
|
||||||
|
use_scalenorm=False,
|
||||||
|
use_rmsnorm=False,
|
||||||
|
use_rezero=False,
|
||||||
|
rel_pos_num_buckets=32,
|
||||||
|
rel_pos_max_distance=128,
|
||||||
|
position_infused_attn=False,
|
||||||
|
custom_layers=None,
|
||||||
|
sandwich_coef=None,
|
||||||
|
par_ratio=None,
|
||||||
|
residual_attn=False,
|
||||||
|
cross_residual_attn=False,
|
||||||
|
macaron=False,
|
||||||
|
pre_norm=True,
|
||||||
|
gate_residual=False,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
|
||||||
|
attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
|
||||||
|
|
||||||
|
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
|
||||||
|
|
||||||
|
self.dim = dim
|
||||||
|
self.depth = depth
|
||||||
|
self.layers = nn.ModuleList([])
|
||||||
|
|
||||||
|
self.has_pos_emb = position_infused_attn
|
||||||
|
self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
|
||||||
|
self.rotary_pos_emb = always(None)
|
||||||
|
|
||||||
|
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
|
||||||
|
self.rel_pos = None
|
||||||
|
|
||||||
|
self.pre_norm = pre_norm
|
||||||
|
|
||||||
|
self.residual_attn = residual_attn
|
||||||
|
self.cross_residual_attn = cross_residual_attn
|
||||||
|
|
||||||
|
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
|
||||||
|
norm_class = RMSNorm if use_rmsnorm else norm_class
|
||||||
|
norm_fn = partial(norm_class, dim)
|
||||||
|
|
||||||
|
norm_fn = nn.Identity if use_rezero else norm_fn
|
||||||
|
branch_fn = Rezero if use_rezero else None
|
||||||
|
|
||||||
|
if cross_attend and not only_cross:
|
||||||
|
default_block = ('a', 'c', 'f')
|
||||||
|
elif cross_attend and only_cross:
|
||||||
|
default_block = ('c', 'f')
|
||||||
|
else:
|
||||||
|
default_block = ('a', 'f')
|
||||||
|
|
||||||
|
if macaron:
|
||||||
|
default_block = ('f',) + default_block
|
||||||
|
|
||||||
|
if exists(custom_layers):
|
||||||
|
layer_types = custom_layers
|
||||||
|
elif exists(par_ratio):
|
||||||
|
par_depth = depth * len(default_block)
|
||||||
|
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
|
||||||
|
default_block = tuple(filter(not_equals('f'), default_block))
|
||||||
|
par_attn = par_depth // par_ratio
|
||||||
|
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
|
||||||
|
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
||||||
|
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
|
||||||
|
par_block = default_block + ('f',) * (par_width - len(default_block))
|
||||||
|
par_head = par_block * par_attn
|
||||||
|
layer_types = par_head + ('f',) * (par_depth - len(par_head))
|
||||||
|
elif exists(sandwich_coef):
|
||||||
|
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
|
||||||
|
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
|
||||||
|
else:
|
||||||
|
layer_types = default_block * depth
|
||||||
|
|
||||||
|
self.layer_types = layer_types
|
||||||
|
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
|
||||||
|
|
||||||
|
for layer_type in self.layer_types:
|
||||||
|
if layer_type == 'a':
|
||||||
|
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
|
||||||
|
elif layer_type == 'c':
|
||||||
|
layer = Attention(dim, heads=heads, **attn_kwargs)
|
||||||
|
elif layer_type == 'f':
|
||||||
|
layer = FeedForward(dim, **ff_kwargs)
|
||||||
|
layer = layer if not macaron else Scale(0.5, layer)
|
||||||
|
else:
|
||||||
|
raise Exception(f'invalid layer type {layer_type}')
|
||||||
|
|
||||||
|
if isinstance(layer, Attention) and exists(branch_fn):
|
||||||
|
layer = branch_fn(layer)
|
||||||
|
|
||||||
|
if gate_residual:
|
||||||
|
residual_fn = GRUGating(dim)
|
||||||
|
else:
|
||||||
|
residual_fn = Residual()
|
||||||
|
|
||||||
|
self.layers.append(nn.ModuleList([
|
||||||
|
norm_fn(),
|
||||||
|
layer,
|
||||||
|
residual_fn
|
||||||
|
]))
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x,
|
||||||
|
context=None,
|
||||||
|
mask=None,
|
||||||
|
context_mask=None,
|
||||||
|
mems=None,
|
||||||
|
return_hiddens=False
|
||||||
|
):
|
||||||
|
hiddens = []
|
||||||
|
intermediates = []
|
||||||
|
prev_attn = None
|
||||||
|
prev_cross_attn = None
|
||||||
|
|
||||||
|
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
||||||
|
|
||||||
|
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
|
||||||
|
is_last = ind == (len(self.layers) - 1)
|
||||||
|
|
||||||
|
if layer_type == 'a':
|
||||||
|
hiddens.append(x)
|
||||||
|
layer_mem = mems.pop(0)
|
||||||
|
|
||||||
|
residual = x
|
||||||
|
|
||||||
|
if self.pre_norm:
|
||||||
|
x = norm(x)
|
||||||
|
|
||||||
|
if layer_type == 'a':
|
||||||
|
out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
|
||||||
|
prev_attn=prev_attn, mem=layer_mem)
|
||||||
|
elif layer_type == 'c':
|
||||||
|
out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
|
||||||
|
elif layer_type == 'f':
|
||||||
|
out = block(x)
|
||||||
|
|
||||||
|
x = residual_fn(out, residual)
|
||||||
|
|
||||||
|
if layer_type in ('a', 'c'):
|
||||||
|
intermediates.append(inter)
|
||||||
|
|
||||||
|
if layer_type == 'a' and self.residual_attn:
|
||||||
|
prev_attn = inter.pre_softmax_attn
|
||||||
|
elif layer_type == 'c' and self.cross_residual_attn:
|
||||||
|
prev_cross_attn = inter.pre_softmax_attn
|
||||||
|
|
||||||
|
if not self.pre_norm and not is_last:
|
||||||
|
x = norm(x)
|
||||||
|
|
||||||
|
if return_hiddens:
|
||||||
|
intermediates = LayerIntermediates(
|
||||||
|
hiddens=hiddens,
|
||||||
|
attn_intermediates=intermediates
|
||||||
|
)
|
||||||
|
|
||||||
|
return x, intermediates
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Encoder(AttentionLayers):
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
assert 'causal' not in kwargs, 'cannot set causality on encoder'
|
||||||
|
super().__init__(causal=False, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerWrapper(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
num_tokens,
|
||||||
|
max_seq_len,
|
||||||
|
attn_layers,
|
||||||
|
emb_dim=None,
|
||||||
|
max_mem_len=0.,
|
||||||
|
emb_dropout=0.,
|
||||||
|
num_memory_tokens=None,
|
||||||
|
tie_embedding=False,
|
||||||
|
use_pos_emb=True
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
||||||
|
|
||||||
|
dim = attn_layers.dim
|
||||||
|
emb_dim = default(emb_dim, dim)
|
||||||
|
|
||||||
|
self.max_seq_len = max_seq_len
|
||||||
|
self.max_mem_len = max_mem_len
|
||||||
|
self.num_tokens = num_tokens
|
||||||
|
|
||||||
|
self.token_emb = nn.Embedding(num_tokens, emb_dim)
|
||||||
|
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
|
||||||
|
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
|
||||||
|
self.emb_dropout = nn.Dropout(emb_dropout)
|
||||||
|
|
||||||
|
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
||||||
|
self.attn_layers = attn_layers
|
||||||
|
self.norm = nn.LayerNorm(dim)
|
||||||
|
|
||||||
|
self.init_()
|
||||||
|
|
||||||
|
self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
|
||||||
|
|
||||||
|
# memory tokens (like [cls]) from Memory Transformers paper
|
||||||
|
num_memory_tokens = default(num_memory_tokens, 0)
|
||||||
|
self.num_memory_tokens = num_memory_tokens
|
||||||
|
if num_memory_tokens > 0:
|
||||||
|
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
||||||
|
|
||||||
|
# let funnel encoder know number of memory tokens, if specified
|
||||||
|
if hasattr(attn_layers, 'num_memory_tokens'):
|
||||||
|
attn_layers.num_memory_tokens = num_memory_tokens
|
||||||
|
|
||||||
|
def init_(self):
|
||||||
|
nn.init.normal_(self.token_emb.weight, std=0.02)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x,
|
||||||
|
return_embeddings=False,
|
||||||
|
mask=None,
|
||||||
|
return_mems=False,
|
||||||
|
return_attn=False,
|
||||||
|
mems=None,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
|
||||||
|
x = self.token_emb(x)
|
||||||
|
x += self.pos_emb(x)
|
||||||
|
x = self.emb_dropout(x)
|
||||||
|
|
||||||
|
x = self.project_emb(x)
|
||||||
|
|
||||||
|
if num_mem > 0:
|
||||||
|
mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
|
||||||
|
x = torch.cat((mem, x), dim=1)
|
||||||
|
|
||||||
|
# auto-handle masking after appending memory tokens
|
||||||
|
if exists(mask):
|
||||||
|
mask = F.pad(mask, (num_mem, 0), value=True)
|
||||||
|
|
||||||
|
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
|
||||||
|
x = self.norm(x)
|
||||||
|
|
||||||
|
mem, x = x[:, :num_mem], x[:, num_mem:]
|
||||||
|
|
||||||
|
out = self.to_logits(x) if not return_embeddings else x
|
||||||
|
|
||||||
|
if return_mems:
|
||||||
|
hiddens = intermediates.hiddens
|
||||||
|
new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
|
||||||
|
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
|
||||||
|
return out, new_mems
|
||||||
|
|
||||||
|
if return_attn:
|
||||||
|
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
||||||
|
return out, attn_maps
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
203
OCR_earsing/latent_diffusion/ldm/util.py
Normal file
203
OCR_earsing/latent_diffusion/ldm/util.py
Normal file
@@ -0,0 +1,203 @@
|
|||||||
|
import importlib
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from collections import abc
|
||||||
|
from einops import rearrange
|
||||||
|
from functools import partial
|
||||||
|
|
||||||
|
import multiprocessing as mp
|
||||||
|
from threading import Thread
|
||||||
|
from queue import Queue
|
||||||
|
|
||||||
|
from inspect import isfunction
|
||||||
|
from PIL import Image, ImageDraw, ImageFont
|
||||||
|
|
||||||
|
|
||||||
|
def log_txt_as_img(wh, xc, size=10):
|
||||||
|
# wh a tuple of (width, height)
|
||||||
|
# xc a list of captions to plot
|
||||||
|
b = len(xc)
|
||||||
|
txts = list()
|
||||||
|
for bi in range(b):
|
||||||
|
txt = Image.new("RGB", wh, color="white")
|
||||||
|
draw = ImageDraw.Draw(txt)
|
||||||
|
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
|
||||||
|
nc = int(40 * (wh[0] / 256))
|
||||||
|
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
||||||
|
|
||||||
|
try:
|
||||||
|
draw.text((0, 0), lines, fill="black", font=font)
|
||||||
|
except UnicodeEncodeError:
|
||||||
|
print("Cant encode string for logging. Skipping.")
|
||||||
|
|
||||||
|
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
||||||
|
txts.append(txt)
|
||||||
|
txts = np.stack(txts)
|
||||||
|
txts = torch.tensor(txts)
|
||||||
|
return txts
|
||||||
|
|
||||||
|
|
||||||
|
def ismap(x):
|
||||||
|
if not isinstance(x, torch.Tensor):
|
||||||
|
return False
|
||||||
|
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
||||||
|
|
||||||
|
|
||||||
|
def isimage(x):
|
||||||
|
if not isinstance(x, torch.Tensor):
|
||||||
|
return False
|
||||||
|
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
||||||
|
|
||||||
|
|
||||||
|
def exists(x):
|
||||||
|
return x is not None
|
||||||
|
|
||||||
|
|
||||||
|
def default(val, d):
|
||||||
|
if exists(val):
|
||||||
|
return val
|
||||||
|
return d() if isfunction(d) else d
|
||||||
|
|
||||||
|
|
||||||
|
def mean_flat(tensor):
|
||||||
|
"""
|
||||||
|
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
||||||
|
Take the mean over all non-batch dimensions.
|
||||||
|
"""
|
||||||
|
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
||||||
|
|
||||||
|
|
||||||
|
def count_params(model, verbose=False):
|
||||||
|
total_params = sum(p.numel() for p in model.parameters())
|
||||||
|
if verbose:
|
||||||
|
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
|
||||||
|
return total_params
|
||||||
|
|
||||||
|
|
||||||
|
def instantiate_from_config(config):
|
||||||
|
if not "target" in config:
|
||||||
|
if config == '__is_first_stage__':
|
||||||
|
return None
|
||||||
|
elif config == "__is_unconditional__":
|
||||||
|
return None
|
||||||
|
raise KeyError("Expected key `target` to instantiate.")
|
||||||
|
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
||||||
|
|
||||||
|
|
||||||
|
def get_obj_from_str(string, reload=False):
|
||||||
|
module, cls = string.rsplit(".", 1)
|
||||||
|
if reload:
|
||||||
|
module_imp = importlib.import_module(module)
|
||||||
|
importlib.reload(module_imp)
|
||||||
|
return getattr(importlib.import_module(module, package=None), cls)
|
||||||
|
|
||||||
|
|
||||||
|
def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False):
|
||||||
|
# create dummy dataset instance
|
||||||
|
|
||||||
|
# run prefetching
|
||||||
|
if idx_to_fn:
|
||||||
|
res = func(data, worker_id=idx)
|
||||||
|
else:
|
||||||
|
res = func(data)
|
||||||
|
Q.put([idx, res])
|
||||||
|
Q.put("Done")
|
||||||
|
|
||||||
|
|
||||||
|
def parallel_data_prefetch(
|
||||||
|
func: callable, data, n_proc, target_data_type="ndarray", cpu_intensive=True, use_worker_id=False
|
||||||
|
):
|
||||||
|
# if target_data_type not in ["ndarray", "list"]:
|
||||||
|
# raise ValueError(
|
||||||
|
# "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray."
|
||||||
|
# )
|
||||||
|
if isinstance(data, np.ndarray) and target_data_type == "list":
|
||||||
|
raise ValueError("list expected but function got ndarray.")
|
||||||
|
elif isinstance(data, abc.Iterable):
|
||||||
|
if isinstance(data, dict):
|
||||||
|
print(
|
||||||
|
f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
|
||||||
|
)
|
||||||
|
data = list(data.values())
|
||||||
|
if target_data_type == "ndarray":
|
||||||
|
data = np.asarray(data)
|
||||||
|
else:
|
||||||
|
data = list(data)
|
||||||
|
else:
|
||||||
|
raise TypeError(
|
||||||
|
f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}."
|
||||||
|
)
|
||||||
|
|
||||||
|
if cpu_intensive:
|
||||||
|
Q = mp.Queue(1000)
|
||||||
|
proc = mp.Process
|
||||||
|
else:
|
||||||
|
Q = Queue(1000)
|
||||||
|
proc = Thread
|
||||||
|
# spawn processes
|
||||||
|
if target_data_type == "ndarray":
|
||||||
|
arguments = [
|
||||||
|
[func, Q, part, i, use_worker_id]
|
||||||
|
for i, part in enumerate(np.array_split(data, n_proc))
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
step = (
|
||||||
|
int(len(data) / n_proc + 1)
|
||||||
|
if len(data) % n_proc != 0
|
||||||
|
else int(len(data) / n_proc)
|
||||||
|
)
|
||||||
|
arguments = [
|
||||||
|
[func, Q, part, i, use_worker_id]
|
||||||
|
for i, part in enumerate(
|
||||||
|
[data[i: i + step] for i in range(0, len(data), step)]
|
||||||
|
)
|
||||||
|
]
|
||||||
|
processes = []
|
||||||
|
for i in range(n_proc):
|
||||||
|
p = proc(target=_do_parallel_data_prefetch, args=arguments[i])
|
||||||
|
processes += [p]
|
||||||
|
|
||||||
|
# start processes
|
||||||
|
print(f"Start prefetching...")
|
||||||
|
import time
|
||||||
|
|
||||||
|
start = time.time()
|
||||||
|
gather_res = [[] for _ in range(n_proc)]
|
||||||
|
try:
|
||||||
|
for p in processes:
|
||||||
|
p.start()
|
||||||
|
|
||||||
|
k = 0
|
||||||
|
while k < n_proc:
|
||||||
|
# get result
|
||||||
|
res = Q.get()
|
||||||
|
if res == "Done":
|
||||||
|
k += 1
|
||||||
|
else:
|
||||||
|
gather_res[res[0]] = res[1]
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print("Exception: ", e)
|
||||||
|
for p in processes:
|
||||||
|
p.terminate()
|
||||||
|
|
||||||
|
raise e
|
||||||
|
finally:
|
||||||
|
for p in processes:
|
||||||
|
p.join()
|
||||||
|
print(f"Prefetching complete. [{time.time() - start} sec.]")
|
||||||
|
|
||||||
|
if target_data_type == 'ndarray':
|
||||||
|
if not isinstance(gather_res[0], np.ndarray):
|
||||||
|
return np.concatenate([np.asarray(r) for r in gather_res], axis=0)
|
||||||
|
|
||||||
|
# order outputs
|
||||||
|
return np.concatenate(gather_res, axis=0)
|
||||||
|
elif target_data_type == 'list':
|
||||||
|
out = []
|
||||||
|
for r in gather_res:
|
||||||
|
out.extend(r)
|
||||||
|
return out
|
||||||
|
else:
|
||||||
|
return gather_res
|
||||||
96
OCR_earsing/latent_diffusion/ldm_erase_text.py
Normal file
96
OCR_earsing/latent_diffusion/ldm_erase_text.py
Normal file
@@ -0,0 +1,96 @@
|
|||||||
|
import argparse, os, sys, glob
|
||||||
|
from omegaconf import OmegaConf
|
||||||
|
from PIL import Image
|
||||||
|
from tqdm import tqdm
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from ldm.util import instantiate_from_config
|
||||||
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||||||
|
|
||||||
|
|
||||||
|
def make_batch(image, mask_pil_image, img_size, device):
|
||||||
|
if isinstance(image, str):
|
||||||
|
if img_size is not None:
|
||||||
|
image = np.array(Image.open(image).convert("RGB").resize(img_size))
|
||||||
|
else:
|
||||||
|
image = np.array(Image.open(image).convert("RGB")) # need to resize to a image_size
|
||||||
|
else:
|
||||||
|
if img_size is not None:
|
||||||
|
image = np.array(image.convert("RGB").resize(img_size))
|
||||||
|
else:
|
||||||
|
image = np.array(image.convert("RGB")) # need to resize to a image_size
|
||||||
|
image = image.astype(np.float32) / 255.0
|
||||||
|
image = image[None].transpose(0, 3, 1, 2)
|
||||||
|
image = torch.from_numpy(image)
|
||||||
|
|
||||||
|
if img_size is not None:
|
||||||
|
mask = np.array(mask_pil_image.convert("L").resize(img_size))
|
||||||
|
else:
|
||||||
|
mask = np.array(mask_pil_image.convert("L"))
|
||||||
|
mask = mask.astype(np.float32) / 255.0
|
||||||
|
mask = mask[None, None]
|
||||||
|
mask[mask < 0.5] = 0
|
||||||
|
mask[mask >= 0.5] = 1
|
||||||
|
mask = torch.from_numpy(mask)
|
||||||
|
|
||||||
|
masked_image = (1 - mask) * image
|
||||||
|
|
||||||
|
batch = {"image": image, "mask": mask, "masked_image": masked_image}
|
||||||
|
for k in batch:
|
||||||
|
batch[k] = batch[k].to(device=device)
|
||||||
|
batch[k] = batch[k] * 2.0 - 1.0
|
||||||
|
return batch
|
||||||
|
|
||||||
|
|
||||||
|
def erase_text_from_image(img_path,
|
||||||
|
mask_pil_img,
|
||||||
|
model,
|
||||||
|
device,
|
||||||
|
opt,
|
||||||
|
img_size=None,
|
||||||
|
steps=None):
|
||||||
|
sampler = DDIMSampler(model)
|
||||||
|
with torch.no_grad():
|
||||||
|
with model.ema_scope():
|
||||||
|
|
||||||
|
if img_size is None:
|
||||||
|
batch = make_batch(
|
||||||
|
img_path,
|
||||||
|
mask_pil_img,
|
||||||
|
img_size=opt.img_size,
|
||||||
|
device=device)
|
||||||
|
else:
|
||||||
|
batch = make_batch(
|
||||||
|
img_path, mask_pil_img, img_size=img_size, device=device)
|
||||||
|
# encode masked image and concat downsampled mask
|
||||||
|
c = model.cond_stage_model.encode(batch["masked_image"])
|
||||||
|
cc = torch.nn.functional.interpolate(
|
||||||
|
batch["mask"], size=c.shape[-2:])
|
||||||
|
c = torch.cat((c, cc), dim=1)
|
||||||
|
|
||||||
|
shape = (c.shape[1] - 1, ) + c.shape[2:]
|
||||||
|
if steps is None:
|
||||||
|
samples_ddim, _ = sampler.sample(
|
||||||
|
S=opt.steps,
|
||||||
|
conditioning=c,
|
||||||
|
batch_size=c.shape[0],
|
||||||
|
shape=shape,
|
||||||
|
verbose=False)
|
||||||
|
else:
|
||||||
|
samples_ddim, _ = sampler.sample(
|
||||||
|
S=steps,
|
||||||
|
conditioning=c,
|
||||||
|
batch_size=c.shape[0],
|
||||||
|
shape=shape,
|
||||||
|
verbose=False)
|
||||||
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||||
|
|
||||||
|
image = torch.clamp((batch["image"] + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
mask = torch.clamp((batch["mask"] + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
predicted_image = torch.clamp(
|
||||||
|
(x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
|
||||||
|
inpainted = (1 - mask) * image + mask * predicted_image
|
||||||
|
inpainted = inpainted.cpu().numpy().transpose(0, 2, 3, 1)[0] * 255
|
||||||
|
|
||||||
|
return Image.fromarray(inpainted.astype(np.uint8))
|
||||||
0
OCR_earsing/latent_diffusion/taming/__init__.py
Normal file
0
OCR_earsing/latent_diffusion/taming/__init__.py
Normal file
352
OCR_earsing/latent_diffusion/taming/models/cond_transformer.py
Normal file
352
OCR_earsing/latent_diffusion/taming/models/cond_transformer.py
Normal file
@@ -0,0 +1,352 @@
|
|||||||
|
import os, math
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
|
||||||
|
from main import instantiate_from_config
|
||||||
|
from taming.modules.util import SOSProvider
|
||||||
|
|
||||||
|
|
||||||
|
def disabled_train(self, mode=True):
|
||||||
|
"""Overwrite model.train with this function to make sure train/eval mode
|
||||||
|
does not change anymore."""
|
||||||
|
return self
|
||||||
|
|
||||||
|
|
||||||
|
class Net2NetTransformer(pl.LightningModule):
|
||||||
|
def __init__(self,
|
||||||
|
transformer_config,
|
||||||
|
first_stage_config,
|
||||||
|
cond_stage_config,
|
||||||
|
permuter_config=None,
|
||||||
|
ckpt_path=None,
|
||||||
|
ignore_keys=[],
|
||||||
|
first_stage_key="image",
|
||||||
|
cond_stage_key="depth",
|
||||||
|
downsample_cond_size=-1,
|
||||||
|
pkeep=1.0,
|
||||||
|
sos_token=0,
|
||||||
|
unconditional=False,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.be_unconditional = unconditional
|
||||||
|
self.sos_token = sos_token
|
||||||
|
self.first_stage_key = first_stage_key
|
||||||
|
self.cond_stage_key = cond_stage_key
|
||||||
|
self.init_first_stage_from_ckpt(first_stage_config)
|
||||||
|
self.init_cond_stage_from_ckpt(cond_stage_config)
|
||||||
|
if permuter_config is None:
|
||||||
|
permuter_config = {"target": "taming.modules.transformer.permuter.Identity"}
|
||||||
|
self.permuter = instantiate_from_config(config=permuter_config)
|
||||||
|
self.transformer = instantiate_from_config(config=transformer_config)
|
||||||
|
|
||||||
|
if ckpt_path is not None:
|
||||||
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||||
|
self.downsample_cond_size = downsample_cond_size
|
||||||
|
self.pkeep = pkeep
|
||||||
|
|
||||||
|
def init_from_ckpt(self, path, ignore_keys=list()):
|
||||||
|
sd = torch.load(path, map_location="cpu")["state_dict"]
|
||||||
|
for k in sd.keys():
|
||||||
|
for ik in ignore_keys:
|
||||||
|
if k.startswith(ik):
|
||||||
|
self.print("Deleting key {} from state_dict.".format(k))
|
||||||
|
del sd[k]
|
||||||
|
self.load_state_dict(sd, strict=False)
|
||||||
|
print(f"Restored from {path}")
|
||||||
|
|
||||||
|
def init_first_stage_from_ckpt(self, config):
|
||||||
|
model = instantiate_from_config(config)
|
||||||
|
model = model.eval()
|
||||||
|
model.train = disabled_train
|
||||||
|
self.first_stage_model = model
|
||||||
|
|
||||||
|
def init_cond_stage_from_ckpt(self, config):
|
||||||
|
if config == "__is_first_stage__":
|
||||||
|
print("Using first stage also as cond stage.")
|
||||||
|
self.cond_stage_model = self.first_stage_model
|
||||||
|
elif config == "__is_unconditional__" or self.be_unconditional:
|
||||||
|
print(f"Using no cond stage. Assuming the training is intended to be unconditional. "
|
||||||
|
f"Prepending {self.sos_token} as a sos token.")
|
||||||
|
self.be_unconditional = True
|
||||||
|
self.cond_stage_key = self.first_stage_key
|
||||||
|
self.cond_stage_model = SOSProvider(self.sos_token)
|
||||||
|
else:
|
||||||
|
model = instantiate_from_config(config)
|
||||||
|
model = model.eval()
|
||||||
|
model.train = disabled_train
|
||||||
|
self.cond_stage_model = model
|
||||||
|
|
||||||
|
def forward(self, x, c):
|
||||||
|
# one step to produce the logits
|
||||||
|
_, z_indices = self.encode_to_z(x)
|
||||||
|
_, c_indices = self.encode_to_c(c)
|
||||||
|
|
||||||
|
if self.training and self.pkeep < 1.0:
|
||||||
|
mask = torch.bernoulli(self.pkeep*torch.ones(z_indices.shape,
|
||||||
|
device=z_indices.device))
|
||||||
|
mask = mask.round().to(dtype=torch.int64)
|
||||||
|
r_indices = torch.randint_like(z_indices, self.transformer.config.vocab_size)
|
||||||
|
a_indices = mask*z_indices+(1-mask)*r_indices
|
||||||
|
else:
|
||||||
|
a_indices = z_indices
|
||||||
|
|
||||||
|
cz_indices = torch.cat((c_indices, a_indices), dim=1)
|
||||||
|
|
||||||
|
# target includes all sequence elements (no need to handle first one
|
||||||
|
# differently because we are conditioning)
|
||||||
|
target = z_indices
|
||||||
|
# make the prediction
|
||||||
|
logits, _ = self.transformer(cz_indices[:, :-1])
|
||||||
|
# cut off conditioning outputs - output i corresponds to p(z_i | z_{<i}, c)
|
||||||
|
logits = logits[:, c_indices.shape[1]-1:]
|
||||||
|
|
||||||
|
return logits, target
|
||||||
|
|
||||||
|
def top_k_logits(self, logits, k):
|
||||||
|
v, ix = torch.topk(logits, k)
|
||||||
|
out = logits.clone()
|
||||||
|
out[out < v[..., [-1]]] = -float('Inf')
|
||||||
|
return out
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def sample(self, x, c, steps, temperature=1.0, sample=False, top_k=None,
|
||||||
|
callback=lambda k: None):
|
||||||
|
x = torch.cat((c,x),dim=1)
|
||||||
|
block_size = self.transformer.get_block_size()
|
||||||
|
assert not self.transformer.training
|
||||||
|
if self.pkeep <= 0.0:
|
||||||
|
# one pass suffices since input is pure noise anyway
|
||||||
|
assert len(x.shape)==2
|
||||||
|
noise_shape = (x.shape[0], steps-1)
|
||||||
|
#noise = torch.randint(self.transformer.config.vocab_size, noise_shape).to(x)
|
||||||
|
noise = c.clone()[:,x.shape[1]-c.shape[1]:-1]
|
||||||
|
x = torch.cat((x,noise),dim=1)
|
||||||
|
logits, _ = self.transformer(x)
|
||||||
|
# take all logits for now and scale by temp
|
||||||
|
logits = logits / temperature
|
||||||
|
# optionally crop probabilities to only the top k options
|
||||||
|
if top_k is not None:
|
||||||
|
logits = self.top_k_logits(logits, top_k)
|
||||||
|
# apply softmax to convert to probabilities
|
||||||
|
probs = F.softmax(logits, dim=-1)
|
||||||
|
# sample from the distribution or take the most likely
|
||||||
|
if sample:
|
||||||
|
shape = probs.shape
|
||||||
|
probs = probs.reshape(shape[0]*shape[1],shape[2])
|
||||||
|
ix = torch.multinomial(probs, num_samples=1)
|
||||||
|
probs = probs.reshape(shape[0],shape[1],shape[2])
|
||||||
|
ix = ix.reshape(shape[0],shape[1])
|
||||||
|
else:
|
||||||
|
_, ix = torch.topk(probs, k=1, dim=-1)
|
||||||
|
# cut off conditioning
|
||||||
|
x = ix[:, c.shape[1]-1:]
|
||||||
|
else:
|
||||||
|
for k in range(steps):
|
||||||
|
callback(k)
|
||||||
|
assert x.size(1) <= block_size # make sure model can see conditioning
|
||||||
|
x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed
|
||||||
|
logits, _ = self.transformer(x_cond)
|
||||||
|
# pluck the logits at the final step and scale by temperature
|
||||||
|
logits = logits[:, -1, :] / temperature
|
||||||
|
# optionally crop probabilities to only the top k options
|
||||||
|
if top_k is not None:
|
||||||
|
logits = self.top_k_logits(logits, top_k)
|
||||||
|
# apply softmax to convert to probabilities
|
||||||
|
probs = F.softmax(logits, dim=-1)
|
||||||
|
# sample from the distribution or take the most likely
|
||||||
|
if sample:
|
||||||
|
ix = torch.multinomial(probs, num_samples=1)
|
||||||
|
else:
|
||||||
|
_, ix = torch.topk(probs, k=1, dim=-1)
|
||||||
|
# append to the sequence and continue
|
||||||
|
x = torch.cat((x, ix), dim=1)
|
||||||
|
# cut off conditioning
|
||||||
|
x = x[:, c.shape[1]:]
|
||||||
|
return x
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def encode_to_z(self, x):
|
||||||
|
quant_z, _, info = self.first_stage_model.encode(x)
|
||||||
|
indices = info[2].view(quant_z.shape[0], -1)
|
||||||
|
indices = self.permuter(indices)
|
||||||
|
return quant_z, indices
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def encode_to_c(self, c):
|
||||||
|
if self.downsample_cond_size > -1:
|
||||||
|
c = F.interpolate(c, size=(self.downsample_cond_size, self.downsample_cond_size))
|
||||||
|
quant_c, _, [_,_,indices] = self.cond_stage_model.encode(c)
|
||||||
|
if len(indices.shape) > 2:
|
||||||
|
indices = indices.view(c.shape[0], -1)
|
||||||
|
return quant_c, indices
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def decode_to_img(self, index, zshape):
|
||||||
|
index = self.permuter(index, reverse=True)
|
||||||
|
bhwc = (zshape[0],zshape[2],zshape[3],zshape[1])
|
||||||
|
quant_z = self.first_stage_model.quantize.get_codebook_entry(
|
||||||
|
index.reshape(-1), shape=bhwc)
|
||||||
|
x = self.first_stage_model.decode(quant_z)
|
||||||
|
return x
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def log_images(self, batch, temperature=None, top_k=None, callback=None, lr_interface=False, **kwargs):
|
||||||
|
log = dict()
|
||||||
|
|
||||||
|
N = 4
|
||||||
|
if lr_interface:
|
||||||
|
x, c = self.get_xc(batch, N, diffuse=False, upsample_factor=8)
|
||||||
|
else:
|
||||||
|
x, c = self.get_xc(batch, N)
|
||||||
|
x = x.to(device=self.device)
|
||||||
|
c = c.to(device=self.device)
|
||||||
|
|
||||||
|
quant_z, z_indices = self.encode_to_z(x)
|
||||||
|
quant_c, c_indices = self.encode_to_c(c)
|
||||||
|
|
||||||
|
# create a "half"" sample
|
||||||
|
z_start_indices = z_indices[:,:z_indices.shape[1]//2]
|
||||||
|
index_sample = self.sample(z_start_indices, c_indices,
|
||||||
|
steps=z_indices.shape[1]-z_start_indices.shape[1],
|
||||||
|
temperature=temperature if temperature is not None else 1.0,
|
||||||
|
sample=True,
|
||||||
|
top_k=top_k if top_k is not None else 100,
|
||||||
|
callback=callback if callback is not None else lambda k: None)
|
||||||
|
x_sample = self.decode_to_img(index_sample, quant_z.shape)
|
||||||
|
|
||||||
|
# sample
|
||||||
|
z_start_indices = z_indices[:, :0]
|
||||||
|
index_sample = self.sample(z_start_indices, c_indices,
|
||||||
|
steps=z_indices.shape[1],
|
||||||
|
temperature=temperature if temperature is not None else 1.0,
|
||||||
|
sample=True,
|
||||||
|
top_k=top_k if top_k is not None else 100,
|
||||||
|
callback=callback if callback is not None else lambda k: None)
|
||||||
|
x_sample_nopix = self.decode_to_img(index_sample, quant_z.shape)
|
||||||
|
|
||||||
|
# det sample
|
||||||
|
z_start_indices = z_indices[:, :0]
|
||||||
|
index_sample = self.sample(z_start_indices, c_indices,
|
||||||
|
steps=z_indices.shape[1],
|
||||||
|
sample=False,
|
||||||
|
callback=callback if callback is not None else lambda k: None)
|
||||||
|
x_sample_det = self.decode_to_img(index_sample, quant_z.shape)
|
||||||
|
|
||||||
|
# reconstruction
|
||||||
|
x_rec = self.decode_to_img(z_indices, quant_z.shape)
|
||||||
|
|
||||||
|
log["inputs"] = x
|
||||||
|
log["reconstructions"] = x_rec
|
||||||
|
|
||||||
|
if self.cond_stage_key in ["objects_bbox", "objects_center_points"]:
|
||||||
|
figure_size = (x_rec.shape[2], x_rec.shape[3])
|
||||||
|
dataset = kwargs["pl_module"].trainer.datamodule.datasets["validation"]
|
||||||
|
label_for_category_no = dataset.get_textual_label_for_category_no
|
||||||
|
plotter = dataset.conditional_builders[self.cond_stage_key].plot
|
||||||
|
log["conditioning"] = torch.zeros_like(log["reconstructions"])
|
||||||
|
for i in range(quant_c.shape[0]):
|
||||||
|
log["conditioning"][i] = plotter(quant_c[i], label_for_category_no, figure_size)
|
||||||
|
log["conditioning_rec"] = log["conditioning"]
|
||||||
|
elif self.cond_stage_key != "image":
|
||||||
|
cond_rec = self.cond_stage_model.decode(quant_c)
|
||||||
|
if self.cond_stage_key == "segmentation":
|
||||||
|
# get image from segmentation mask
|
||||||
|
num_classes = cond_rec.shape[1]
|
||||||
|
|
||||||
|
c = torch.argmax(c, dim=1, keepdim=True)
|
||||||
|
c = F.one_hot(c, num_classes=num_classes)
|
||||||
|
c = c.squeeze(1).permute(0, 3, 1, 2).float()
|
||||||
|
c = self.cond_stage_model.to_rgb(c)
|
||||||
|
|
||||||
|
cond_rec = torch.argmax(cond_rec, dim=1, keepdim=True)
|
||||||
|
cond_rec = F.one_hot(cond_rec, num_classes=num_classes)
|
||||||
|
cond_rec = cond_rec.squeeze(1).permute(0, 3, 1, 2).float()
|
||||||
|
cond_rec = self.cond_stage_model.to_rgb(cond_rec)
|
||||||
|
log["conditioning_rec"] = cond_rec
|
||||||
|
log["conditioning"] = c
|
||||||
|
|
||||||
|
log["samples_half"] = x_sample
|
||||||
|
log["samples_nopix"] = x_sample_nopix
|
||||||
|
log["samples_det"] = x_sample_det
|
||||||
|
return log
|
||||||
|
|
||||||
|
def get_input(self, key, batch):
|
||||||
|
x = batch[key]
|
||||||
|
if len(x.shape) == 3:
|
||||||
|
x = x[..., None]
|
||||||
|
if len(x.shape) == 4:
|
||||||
|
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
|
||||||
|
if x.dtype == torch.double:
|
||||||
|
x = x.float()
|
||||||
|
return x
|
||||||
|
|
||||||
|
def get_xc(self, batch, N=None):
|
||||||
|
x = self.get_input(self.first_stage_key, batch)
|
||||||
|
c = self.get_input(self.cond_stage_key, batch)
|
||||||
|
if N is not None:
|
||||||
|
x = x[:N]
|
||||||
|
c = c[:N]
|
||||||
|
return x, c
|
||||||
|
|
||||||
|
def shared_step(self, batch, batch_idx):
|
||||||
|
x, c = self.get_xc(batch)
|
||||||
|
logits, target = self(x, c)
|
||||||
|
loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), target.reshape(-1))
|
||||||
|
return loss
|
||||||
|
|
||||||
|
def training_step(self, batch, batch_idx):
|
||||||
|
loss = self.shared_step(batch, batch_idx)
|
||||||
|
self.log("train/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
def validation_step(self, batch, batch_idx):
|
||||||
|
loss = self.shared_step(batch, batch_idx)
|
||||||
|
self.log("val/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
"""
|
||||||
|
Following minGPT:
|
||||||
|
This long function is unfortunately doing something very simple and is being very defensive:
|
||||||
|
We are separating out all parameters of the model into two buckets: those that will experience
|
||||||
|
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
|
||||||
|
We are then returning the PyTorch optimizer object.
|
||||||
|
"""
|
||||||
|
# separate out all parameters to those that will and won't experience regularizing weight decay
|
||||||
|
decay = set()
|
||||||
|
no_decay = set()
|
||||||
|
whitelist_weight_modules = (torch.nn.Linear, )
|
||||||
|
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
|
||||||
|
for mn, m in self.transformer.named_modules():
|
||||||
|
for pn, p in m.named_parameters():
|
||||||
|
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
||||||
|
|
||||||
|
if pn.endswith('bias'):
|
||||||
|
# all biases will not be decayed
|
||||||
|
no_decay.add(fpn)
|
||||||
|
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
|
||||||
|
# weights of whitelist modules will be weight decayed
|
||||||
|
decay.add(fpn)
|
||||||
|
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
|
||||||
|
# weights of blacklist modules will NOT be weight decayed
|
||||||
|
no_decay.add(fpn)
|
||||||
|
|
||||||
|
# special case the position embedding parameter in the root GPT module as not decayed
|
||||||
|
no_decay.add('pos_emb')
|
||||||
|
|
||||||
|
# validate that we considered every parameter
|
||||||
|
param_dict = {pn: p for pn, p in self.transformer.named_parameters()}
|
||||||
|
inter_params = decay & no_decay
|
||||||
|
union_params = decay | no_decay
|
||||||
|
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
|
||||||
|
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
|
||||||
|
% (str(param_dict.keys() - union_params), )
|
||||||
|
|
||||||
|
# create the pytorch optimizer object
|
||||||
|
optim_groups = [
|
||||||
|
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.01},
|
||||||
|
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
|
||||||
|
]
|
||||||
|
optimizer = torch.optim.AdamW(optim_groups, lr=self.learning_rate, betas=(0.9, 0.95))
|
||||||
|
return optimizer
|
||||||
@@ -0,0 +1,22 @@
|
|||||||
|
from torch import Tensor
|
||||||
|
|
||||||
|
|
||||||
|
class DummyCondStage:
|
||||||
|
def __init__(self, conditional_key):
|
||||||
|
self.conditional_key = conditional_key
|
||||||
|
self.train = None
|
||||||
|
|
||||||
|
def eval(self):
|
||||||
|
return self
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def encode(c: Tensor):
|
||||||
|
return c, None, (None, None, c)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def decode(c: Tensor):
|
||||||
|
return c
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def to_rgb(c: Tensor):
|
||||||
|
return c
|
||||||
404
OCR_earsing/latent_diffusion/taming/models/vqgan.py
Normal file
404
OCR_earsing/latent_diffusion/taming/models/vqgan.py
Normal file
@@ -0,0 +1,404 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
|
||||||
|
from main import instantiate_from_config
|
||||||
|
|
||||||
|
from taming.modules.diffusionmodules.model import Encoder, Decoder
|
||||||
|
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
||||||
|
from taming.modules.vqvae.quantize import GumbelQuantize
|
||||||
|
from taming.modules.vqvae.quantize import EMAVectorQuantizer
|
||||||
|
|
||||||
|
class VQModel(pl.LightningModule):
|
||||||
|
def __init__(self,
|
||||||
|
ddconfig,
|
||||||
|
lossconfig,
|
||||||
|
n_embed,
|
||||||
|
embed_dim,
|
||||||
|
ckpt_path=None,
|
||||||
|
ignore_keys=[],
|
||||||
|
image_key="image",
|
||||||
|
colorize_nlabels=None,
|
||||||
|
monitor=None,
|
||||||
|
remap=None,
|
||||||
|
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.image_key = image_key
|
||||||
|
self.encoder = Encoder(**ddconfig)
|
||||||
|
self.decoder = Decoder(**ddconfig)
|
||||||
|
self.loss = instantiate_from_config(lossconfig)
|
||||||
|
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
||||||
|
remap=remap, sane_index_shape=sane_index_shape)
|
||||||
|
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
||||||
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
||||||
|
if ckpt_path is not None:
|
||||||
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||||
|
self.image_key = image_key
|
||||||
|
if colorize_nlabels is not None:
|
||||||
|
assert type(colorize_nlabels)==int
|
||||||
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
||||||
|
if monitor is not None:
|
||||||
|
self.monitor = monitor
|
||||||
|
|
||||||
|
def init_from_ckpt(self, path, ignore_keys=list()):
|
||||||
|
sd = torch.load(path, map_location="cpu")["state_dict"]
|
||||||
|
keys = list(sd.keys())
|
||||||
|
for k in keys:
|
||||||
|
for ik in ignore_keys:
|
||||||
|
if k.startswith(ik):
|
||||||
|
print("Deleting key {} from state_dict.".format(k))
|
||||||
|
del sd[k]
|
||||||
|
self.load_state_dict(sd, strict=False)
|
||||||
|
print(f"Restored from {path}")
|
||||||
|
|
||||||
|
def encode(self, x):
|
||||||
|
h = self.encoder(x)
|
||||||
|
h = self.quant_conv(h)
|
||||||
|
quant, emb_loss, info = self.quantize(h)
|
||||||
|
return quant, emb_loss, info
|
||||||
|
|
||||||
|
def decode(self, quant):
|
||||||
|
quant = self.post_quant_conv(quant)
|
||||||
|
dec = self.decoder(quant)
|
||||||
|
return dec
|
||||||
|
|
||||||
|
def decode_code(self, code_b):
|
||||||
|
quant_b = self.quantize.embed_code(code_b)
|
||||||
|
dec = self.decode(quant_b)
|
||||||
|
return dec
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
quant, diff, _ = self.encode(input)
|
||||||
|
dec = self.decode(quant)
|
||||||
|
return dec, diff
|
||||||
|
|
||||||
|
def get_input(self, batch, k):
|
||||||
|
x = batch[k]
|
||||||
|
if len(x.shape) == 3:
|
||||||
|
x = x[..., None]
|
||||||
|
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
|
||||||
|
return x.float()
|
||||||
|
|
||||||
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
xrec, qloss = self(x)
|
||||||
|
|
||||||
|
if optimizer_idx == 0:
|
||||||
|
# autoencode
|
||||||
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="train")
|
||||||
|
|
||||||
|
self.log("train/aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||||
|
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||||
|
return aeloss
|
||||||
|
|
||||||
|
if optimizer_idx == 1:
|
||||||
|
# discriminator
|
||||||
|
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="train")
|
||||||
|
self.log("train/discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||||
|
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||||
|
return discloss
|
||||||
|
|
||||||
|
def validation_step(self, batch, batch_idx):
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
xrec, qloss = self(x)
|
||||||
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="val")
|
||||||
|
|
||||||
|
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="val")
|
||||||
|
rec_loss = log_dict_ae["val/rec_loss"]
|
||||||
|
self.log("val/rec_loss", rec_loss,
|
||||||
|
prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
|
||||||
|
self.log("val/aeloss", aeloss,
|
||||||
|
prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
|
||||||
|
self.log_dict(log_dict_ae)
|
||||||
|
self.log_dict(log_dict_disc)
|
||||||
|
return self.log_dict
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
lr = self.learning_rate
|
||||||
|
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
||||||
|
list(self.decoder.parameters())+
|
||||||
|
list(self.quantize.parameters())+
|
||||||
|
list(self.quant_conv.parameters())+
|
||||||
|
list(self.post_quant_conv.parameters()),
|
||||||
|
lr=lr, betas=(0.5, 0.9))
|
||||||
|
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
||||||
|
lr=lr, betas=(0.5, 0.9))
|
||||||
|
return [opt_ae, opt_disc], []
|
||||||
|
|
||||||
|
def get_last_layer(self):
|
||||||
|
return self.decoder.conv_out.weight
|
||||||
|
|
||||||
|
def log_images(self, batch, **kwargs):
|
||||||
|
log = dict()
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
x = x.to(self.device)
|
||||||
|
xrec, _ = self(x)
|
||||||
|
if x.shape[1] > 3:
|
||||||
|
# colorize with random projection
|
||||||
|
assert xrec.shape[1] > 3
|
||||||
|
x = self.to_rgb(x)
|
||||||
|
xrec = self.to_rgb(xrec)
|
||||||
|
log["inputs"] = x
|
||||||
|
log["reconstructions"] = xrec
|
||||||
|
return log
|
||||||
|
|
||||||
|
def to_rgb(self, x):
|
||||||
|
assert self.image_key == "segmentation"
|
||||||
|
if not hasattr(self, "colorize"):
|
||||||
|
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
||||||
|
x = F.conv2d(x, weight=self.colorize)
|
||||||
|
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class VQSegmentationModel(VQModel):
|
||||||
|
def __init__(self, n_labels, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.register_buffer("colorize", torch.randn(3, n_labels, 1, 1))
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
lr = self.learning_rate
|
||||||
|
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
||||||
|
list(self.decoder.parameters())+
|
||||||
|
list(self.quantize.parameters())+
|
||||||
|
list(self.quant_conv.parameters())+
|
||||||
|
list(self.post_quant_conv.parameters()),
|
||||||
|
lr=lr, betas=(0.5, 0.9))
|
||||||
|
return opt_ae
|
||||||
|
|
||||||
|
def training_step(self, batch, batch_idx):
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
xrec, qloss = self(x)
|
||||||
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, split="train")
|
||||||
|
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||||
|
return aeloss
|
||||||
|
|
||||||
|
def validation_step(self, batch, batch_idx):
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
xrec, qloss = self(x)
|
||||||
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, split="val")
|
||||||
|
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||||
|
total_loss = log_dict_ae["val/total_loss"]
|
||||||
|
self.log("val/total_loss", total_loss,
|
||||||
|
prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
|
||||||
|
return aeloss
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def log_images(self, batch, **kwargs):
|
||||||
|
log = dict()
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
x = x.to(self.device)
|
||||||
|
xrec, _ = self(x)
|
||||||
|
if x.shape[1] > 3:
|
||||||
|
# colorize with random projection
|
||||||
|
assert xrec.shape[1] > 3
|
||||||
|
# convert logits to indices
|
||||||
|
xrec = torch.argmax(xrec, dim=1, keepdim=True)
|
||||||
|
xrec = F.one_hot(xrec, num_classes=x.shape[1])
|
||||||
|
xrec = xrec.squeeze(1).permute(0, 3, 1, 2).float()
|
||||||
|
x = self.to_rgb(x)
|
||||||
|
xrec = self.to_rgb(xrec)
|
||||||
|
log["inputs"] = x
|
||||||
|
log["reconstructions"] = xrec
|
||||||
|
return log
|
||||||
|
|
||||||
|
|
||||||
|
class VQNoDiscModel(VQModel):
|
||||||
|
def __init__(self,
|
||||||
|
ddconfig,
|
||||||
|
lossconfig,
|
||||||
|
n_embed,
|
||||||
|
embed_dim,
|
||||||
|
ckpt_path=None,
|
||||||
|
ignore_keys=[],
|
||||||
|
image_key="image",
|
||||||
|
colorize_nlabels=None
|
||||||
|
):
|
||||||
|
super().__init__(ddconfig=ddconfig, lossconfig=lossconfig, n_embed=n_embed, embed_dim=embed_dim,
|
||||||
|
ckpt_path=ckpt_path, ignore_keys=ignore_keys, image_key=image_key,
|
||||||
|
colorize_nlabels=colorize_nlabels)
|
||||||
|
|
||||||
|
def training_step(self, batch, batch_idx):
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
xrec, qloss = self(x)
|
||||||
|
# autoencode
|
||||||
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, self.global_step, split="train")
|
||||||
|
output = pl.TrainResult(minimize=aeloss)
|
||||||
|
output.log("train/aeloss", aeloss,
|
||||||
|
prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||||
|
output.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||||
|
return output
|
||||||
|
|
||||||
|
def validation_step(self, batch, batch_idx):
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
xrec, qloss = self(x)
|
||||||
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, self.global_step, split="val")
|
||||||
|
rec_loss = log_dict_ae["val/rec_loss"]
|
||||||
|
output = pl.EvalResult(checkpoint_on=rec_loss)
|
||||||
|
output.log("val/rec_loss", rec_loss,
|
||||||
|
prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||||
|
output.log("val/aeloss", aeloss,
|
||||||
|
prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||||
|
output.log_dict(log_dict_ae)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
optimizer = torch.optim.Adam(list(self.encoder.parameters())+
|
||||||
|
list(self.decoder.parameters())+
|
||||||
|
list(self.quantize.parameters())+
|
||||||
|
list(self.quant_conv.parameters())+
|
||||||
|
list(self.post_quant_conv.parameters()),
|
||||||
|
lr=self.learning_rate, betas=(0.5, 0.9))
|
||||||
|
return optimizer
|
||||||
|
|
||||||
|
|
||||||
|
class GumbelVQ(VQModel):
|
||||||
|
def __init__(self,
|
||||||
|
ddconfig,
|
||||||
|
lossconfig,
|
||||||
|
n_embed,
|
||||||
|
embed_dim,
|
||||||
|
temperature_scheduler_config,
|
||||||
|
ckpt_path=None,
|
||||||
|
ignore_keys=[],
|
||||||
|
image_key="image",
|
||||||
|
colorize_nlabels=None,
|
||||||
|
monitor=None,
|
||||||
|
kl_weight=1e-8,
|
||||||
|
remap=None,
|
||||||
|
):
|
||||||
|
|
||||||
|
z_channels = ddconfig["z_channels"]
|
||||||
|
super().__init__(ddconfig,
|
||||||
|
lossconfig,
|
||||||
|
n_embed,
|
||||||
|
embed_dim,
|
||||||
|
ckpt_path=None,
|
||||||
|
ignore_keys=ignore_keys,
|
||||||
|
image_key=image_key,
|
||||||
|
colorize_nlabels=colorize_nlabels,
|
||||||
|
monitor=monitor,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.loss.n_classes = n_embed
|
||||||
|
self.vocab_size = n_embed
|
||||||
|
|
||||||
|
self.quantize = GumbelQuantize(z_channels, embed_dim,
|
||||||
|
n_embed=n_embed,
|
||||||
|
kl_weight=kl_weight, temp_init=1.0,
|
||||||
|
remap=remap)
|
||||||
|
|
||||||
|
self.temperature_scheduler = instantiate_from_config(temperature_scheduler_config) # annealing of temp
|
||||||
|
|
||||||
|
if ckpt_path is not None:
|
||||||
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||||
|
|
||||||
|
def temperature_scheduling(self):
|
||||||
|
self.quantize.temperature = self.temperature_scheduler(self.global_step)
|
||||||
|
|
||||||
|
def encode_to_prequant(self, x):
|
||||||
|
h = self.encoder(x)
|
||||||
|
h = self.quant_conv(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
def decode_code(self, code_b):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
||||||
|
self.temperature_scheduling()
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
xrec, qloss = self(x)
|
||||||
|
|
||||||
|
if optimizer_idx == 0:
|
||||||
|
# autoencode
|
||||||
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="train")
|
||||||
|
|
||||||
|
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||||
|
self.log("temperature", self.quantize.temperature, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||||
|
return aeloss
|
||||||
|
|
||||||
|
if optimizer_idx == 1:
|
||||||
|
# discriminator
|
||||||
|
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="train")
|
||||||
|
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||||
|
return discloss
|
||||||
|
|
||||||
|
def validation_step(self, batch, batch_idx):
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
xrec, qloss = self(x, return_pred_indices=True)
|
||||||
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="val")
|
||||||
|
|
||||||
|
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="val")
|
||||||
|
rec_loss = log_dict_ae["val/rec_loss"]
|
||||||
|
self.log("val/rec_loss", rec_loss,
|
||||||
|
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
||||||
|
self.log("val/aeloss", aeloss,
|
||||||
|
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
||||||
|
self.log_dict(log_dict_ae)
|
||||||
|
self.log_dict(log_dict_disc)
|
||||||
|
return self.log_dict
|
||||||
|
|
||||||
|
def log_images(self, batch, **kwargs):
|
||||||
|
log = dict()
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
x = x.to(self.device)
|
||||||
|
# encode
|
||||||
|
h = self.encoder(x)
|
||||||
|
h = self.quant_conv(h)
|
||||||
|
quant, _, _ = self.quantize(h)
|
||||||
|
# decode
|
||||||
|
x_rec = self.decode(quant)
|
||||||
|
log["inputs"] = x
|
||||||
|
log["reconstructions"] = x_rec
|
||||||
|
return log
|
||||||
|
|
||||||
|
|
||||||
|
class EMAVQ(VQModel):
|
||||||
|
def __init__(self,
|
||||||
|
ddconfig,
|
||||||
|
lossconfig,
|
||||||
|
n_embed,
|
||||||
|
embed_dim,
|
||||||
|
ckpt_path=None,
|
||||||
|
ignore_keys=[],
|
||||||
|
image_key="image",
|
||||||
|
colorize_nlabels=None,
|
||||||
|
monitor=None,
|
||||||
|
remap=None,
|
||||||
|
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||||
|
):
|
||||||
|
super().__init__(ddconfig,
|
||||||
|
lossconfig,
|
||||||
|
n_embed,
|
||||||
|
embed_dim,
|
||||||
|
ckpt_path=None,
|
||||||
|
ignore_keys=ignore_keys,
|
||||||
|
image_key=image_key,
|
||||||
|
colorize_nlabels=colorize_nlabels,
|
||||||
|
monitor=monitor,
|
||||||
|
)
|
||||||
|
self.quantize = EMAVectorQuantizer(n_embed=n_embed,
|
||||||
|
embedding_dim=embed_dim,
|
||||||
|
beta=0.25,
|
||||||
|
remap=remap)
|
||||||
|
def configure_optimizers(self):
|
||||||
|
lr = self.learning_rate
|
||||||
|
#Remove self.quantize from parameter list since it is updated via EMA
|
||||||
|
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
||||||
|
list(self.decoder.parameters())+
|
||||||
|
list(self.quant_conv.parameters())+
|
||||||
|
list(self.post_quant_conv.parameters()),
|
||||||
|
lr=lr, betas=(0.5, 0.9))
|
||||||
|
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
||||||
|
lr=lr, betas=(0.5, 0.9))
|
||||||
|
return [opt_ae, opt_disc], []
|
||||||
@@ -0,0 +1,776 @@
|
|||||||
|
# pytorch_diffusion + derived encoder decoder
|
||||||
|
import math
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def get_timestep_embedding(timesteps, embedding_dim):
|
||||||
|
"""
|
||||||
|
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
||||||
|
From Fairseq.
|
||||||
|
Build sinusoidal embeddings.
|
||||||
|
This matches the implementation in tensor2tensor, but differs slightly
|
||||||
|
from the description in Section 3.5 of "Attention Is All You Need".
|
||||||
|
"""
|
||||||
|
assert len(timesteps.shape) == 1
|
||||||
|
|
||||||
|
half_dim = embedding_dim // 2
|
||||||
|
emb = math.log(10000) / (half_dim - 1)
|
||||||
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
||||||
|
emb = emb.to(device=timesteps.device)
|
||||||
|
emb = timesteps.float()[:, None] * emb[None, :]
|
||||||
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
||||||
|
if embedding_dim % 2 == 1: # zero pad
|
||||||
|
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
||||||
|
return emb
|
||||||
|
|
||||||
|
|
||||||
|
def nonlinearity(x):
|
||||||
|
# swish
|
||||||
|
return x*torch.sigmoid(x)
|
||||||
|
|
||||||
|
|
||||||
|
def Normalize(in_channels):
|
||||||
|
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||||
|
|
||||||
|
|
||||||
|
class Upsample(nn.Module):
|
||||||
|
def __init__(self, in_channels, with_conv):
|
||||||
|
super().__init__()
|
||||||
|
self.with_conv = with_conv
|
||||||
|
if self.with_conv:
|
||||||
|
self.conv = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||||
|
if self.with_conv:
|
||||||
|
x = self.conv(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Downsample(nn.Module):
|
||||||
|
def __init__(self, in_channels, with_conv):
|
||||||
|
super().__init__()
|
||||||
|
self.with_conv = with_conv
|
||||||
|
if self.with_conv:
|
||||||
|
# no asymmetric padding in torch conv, must do it ourselves
|
||||||
|
self.conv = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=2,
|
||||||
|
padding=0)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
if self.with_conv:
|
||||||
|
pad = (0,1,0,1)
|
||||||
|
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
||||||
|
x = self.conv(x)
|
||||||
|
else:
|
||||||
|
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class ResnetBlock(nn.Module):
|
||||||
|
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
||||||
|
dropout, temb_channels=512):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
out_channels = in_channels if out_channels is None else out_channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.use_conv_shortcut = conv_shortcut
|
||||||
|
|
||||||
|
self.norm1 = Normalize(in_channels)
|
||||||
|
self.conv1 = torch.nn.Conv2d(in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
if temb_channels > 0:
|
||||||
|
self.temb_proj = torch.nn.Linear(temb_channels,
|
||||||
|
out_channels)
|
||||||
|
self.norm2 = Normalize(out_channels)
|
||||||
|
self.dropout = torch.nn.Dropout(dropout)
|
||||||
|
self.conv2 = torch.nn.Conv2d(out_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
if self.in_channels != self.out_channels:
|
||||||
|
if self.use_conv_shortcut:
|
||||||
|
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
else:
|
||||||
|
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
|
||||||
|
def forward(self, x, temb):
|
||||||
|
h = x
|
||||||
|
h = self.norm1(h)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
h = self.conv1(h)
|
||||||
|
|
||||||
|
if temb is not None:
|
||||||
|
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
||||||
|
|
||||||
|
h = self.norm2(h)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
h = self.dropout(h)
|
||||||
|
h = self.conv2(h)
|
||||||
|
|
||||||
|
if self.in_channels != self.out_channels:
|
||||||
|
if self.use_conv_shortcut:
|
||||||
|
x = self.conv_shortcut(x)
|
||||||
|
else:
|
||||||
|
x = self.nin_shortcut(x)
|
||||||
|
|
||||||
|
return x+h
|
||||||
|
|
||||||
|
|
||||||
|
class AttnBlock(nn.Module):
|
||||||
|
def __init__(self, in_channels):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
|
||||||
|
self.norm = Normalize(in_channels)
|
||||||
|
self.q = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
self.k = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
self.v = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
self.proj_out = torch.nn.Conv2d(in_channels,
|
||||||
|
in_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
h_ = x
|
||||||
|
h_ = self.norm(h_)
|
||||||
|
q = self.q(h_)
|
||||||
|
k = self.k(h_)
|
||||||
|
v = self.v(h_)
|
||||||
|
|
||||||
|
# compute attention
|
||||||
|
b,c,h,w = q.shape
|
||||||
|
q = q.reshape(b,c,h*w)
|
||||||
|
q = q.permute(0,2,1) # b,hw,c
|
||||||
|
k = k.reshape(b,c,h*w) # b,c,hw
|
||||||
|
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
||||||
|
w_ = w_ * (int(c)**(-0.5))
|
||||||
|
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||||
|
|
||||||
|
# attend to values
|
||||||
|
v = v.reshape(b,c,h*w)
|
||||||
|
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
||||||
|
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
||||||
|
h_ = h_.reshape(b,c,h,w)
|
||||||
|
|
||||||
|
h_ = self.proj_out(h_)
|
||||||
|
|
||||||
|
return x+h_
|
||||||
|
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||||
|
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||||
|
resolution, use_timestep=True):
|
||||||
|
super().__init__()
|
||||||
|
self.ch = ch
|
||||||
|
self.temb_ch = self.ch*4
|
||||||
|
self.num_resolutions = len(ch_mult)
|
||||||
|
self.num_res_blocks = num_res_blocks
|
||||||
|
self.resolution = resolution
|
||||||
|
self.in_channels = in_channels
|
||||||
|
|
||||||
|
self.use_timestep = use_timestep
|
||||||
|
if self.use_timestep:
|
||||||
|
# timestep embedding
|
||||||
|
self.temb = nn.Module()
|
||||||
|
self.temb.dense = nn.ModuleList([
|
||||||
|
torch.nn.Linear(self.ch,
|
||||||
|
self.temb_ch),
|
||||||
|
torch.nn.Linear(self.temb_ch,
|
||||||
|
self.temb_ch),
|
||||||
|
])
|
||||||
|
|
||||||
|
# downsampling
|
||||||
|
self.conv_in = torch.nn.Conv2d(in_channels,
|
||||||
|
self.ch,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
curr_res = resolution
|
||||||
|
in_ch_mult = (1,)+tuple(ch_mult)
|
||||||
|
self.down = nn.ModuleList()
|
||||||
|
for i_level in range(self.num_resolutions):
|
||||||
|
block = nn.ModuleList()
|
||||||
|
attn = nn.ModuleList()
|
||||||
|
block_in = ch*in_ch_mult[i_level]
|
||||||
|
block_out = ch*ch_mult[i_level]
|
||||||
|
for i_block in range(self.num_res_blocks):
|
||||||
|
block.append(ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_out,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout))
|
||||||
|
block_in = block_out
|
||||||
|
if curr_res in attn_resolutions:
|
||||||
|
attn.append(AttnBlock(block_in))
|
||||||
|
down = nn.Module()
|
||||||
|
down.block = block
|
||||||
|
down.attn = attn
|
||||||
|
if i_level != self.num_resolutions-1:
|
||||||
|
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||||
|
curr_res = curr_res // 2
|
||||||
|
self.down.append(down)
|
||||||
|
|
||||||
|
# middle
|
||||||
|
self.mid = nn.Module()
|
||||||
|
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_in,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout)
|
||||||
|
self.mid.attn_1 = AttnBlock(block_in)
|
||||||
|
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_in,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout)
|
||||||
|
|
||||||
|
# upsampling
|
||||||
|
self.up = nn.ModuleList()
|
||||||
|
for i_level in reversed(range(self.num_resolutions)):
|
||||||
|
block = nn.ModuleList()
|
||||||
|
attn = nn.ModuleList()
|
||||||
|
block_out = ch*ch_mult[i_level]
|
||||||
|
skip_in = ch*ch_mult[i_level]
|
||||||
|
for i_block in range(self.num_res_blocks+1):
|
||||||
|
if i_block == self.num_res_blocks:
|
||||||
|
skip_in = ch*in_ch_mult[i_level]
|
||||||
|
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
||||||
|
out_channels=block_out,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout))
|
||||||
|
block_in = block_out
|
||||||
|
if curr_res in attn_resolutions:
|
||||||
|
attn.append(AttnBlock(block_in))
|
||||||
|
up = nn.Module()
|
||||||
|
up.block = block
|
||||||
|
up.attn = attn
|
||||||
|
if i_level != 0:
|
||||||
|
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||||
|
curr_res = curr_res * 2
|
||||||
|
self.up.insert(0, up) # prepend to get consistent order
|
||||||
|
|
||||||
|
# end
|
||||||
|
self.norm_out = Normalize(block_in)
|
||||||
|
self.conv_out = torch.nn.Conv2d(block_in,
|
||||||
|
out_ch,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
|
||||||
|
def forward(self, x, t=None):
|
||||||
|
#assert x.shape[2] == x.shape[3] == self.resolution
|
||||||
|
|
||||||
|
if self.use_timestep:
|
||||||
|
# timestep embedding
|
||||||
|
assert t is not None
|
||||||
|
temb = get_timestep_embedding(t, self.ch)
|
||||||
|
temb = self.temb.dense[0](temb)
|
||||||
|
temb = nonlinearity(temb)
|
||||||
|
temb = self.temb.dense[1](temb)
|
||||||
|
else:
|
||||||
|
temb = None
|
||||||
|
|
||||||
|
# downsampling
|
||||||
|
hs = [self.conv_in(x)]
|
||||||
|
for i_level in range(self.num_resolutions):
|
||||||
|
for i_block in range(self.num_res_blocks):
|
||||||
|
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||||
|
if len(self.down[i_level].attn) > 0:
|
||||||
|
h = self.down[i_level].attn[i_block](h)
|
||||||
|
hs.append(h)
|
||||||
|
if i_level != self.num_resolutions-1:
|
||||||
|
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||||
|
|
||||||
|
# middle
|
||||||
|
h = hs[-1]
|
||||||
|
h = self.mid.block_1(h, temb)
|
||||||
|
h = self.mid.attn_1(h)
|
||||||
|
h = self.mid.block_2(h, temb)
|
||||||
|
|
||||||
|
# upsampling
|
||||||
|
for i_level in reversed(range(self.num_resolutions)):
|
||||||
|
for i_block in range(self.num_res_blocks+1):
|
||||||
|
h = self.up[i_level].block[i_block](
|
||||||
|
torch.cat([h, hs.pop()], dim=1), temb)
|
||||||
|
if len(self.up[i_level].attn) > 0:
|
||||||
|
h = self.up[i_level].attn[i_block](h)
|
||||||
|
if i_level != 0:
|
||||||
|
h = self.up[i_level].upsample(h)
|
||||||
|
|
||||||
|
# end
|
||||||
|
h = self.norm_out(h)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
h = self.conv_out(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
class Encoder(nn.Module):
|
||||||
|
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||||
|
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||||
|
resolution, z_channels, double_z=True, **ignore_kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.ch = ch
|
||||||
|
self.temb_ch = 0
|
||||||
|
self.num_resolutions = len(ch_mult)
|
||||||
|
self.num_res_blocks = num_res_blocks
|
||||||
|
self.resolution = resolution
|
||||||
|
self.in_channels = in_channels
|
||||||
|
|
||||||
|
# downsampling
|
||||||
|
self.conv_in = torch.nn.Conv2d(in_channels,
|
||||||
|
self.ch,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
curr_res = resolution
|
||||||
|
in_ch_mult = (1,)+tuple(ch_mult)
|
||||||
|
self.down = nn.ModuleList()
|
||||||
|
for i_level in range(self.num_resolutions):
|
||||||
|
block = nn.ModuleList()
|
||||||
|
attn = nn.ModuleList()
|
||||||
|
block_in = ch*in_ch_mult[i_level]
|
||||||
|
block_out = ch*ch_mult[i_level]
|
||||||
|
for i_block in range(self.num_res_blocks):
|
||||||
|
block.append(ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_out,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout))
|
||||||
|
block_in = block_out
|
||||||
|
if curr_res in attn_resolutions:
|
||||||
|
attn.append(AttnBlock(block_in))
|
||||||
|
down = nn.Module()
|
||||||
|
down.block = block
|
||||||
|
down.attn = attn
|
||||||
|
if i_level != self.num_resolutions-1:
|
||||||
|
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||||
|
curr_res = curr_res // 2
|
||||||
|
self.down.append(down)
|
||||||
|
|
||||||
|
# middle
|
||||||
|
self.mid = nn.Module()
|
||||||
|
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_in,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout)
|
||||||
|
self.mid.attn_1 = AttnBlock(block_in)
|
||||||
|
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_in,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout)
|
||||||
|
|
||||||
|
# end
|
||||||
|
self.norm_out = Normalize(block_in)
|
||||||
|
self.conv_out = torch.nn.Conv2d(block_in,
|
||||||
|
2*z_channels if double_z else z_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
#assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)
|
||||||
|
|
||||||
|
# timestep embedding
|
||||||
|
temb = None
|
||||||
|
|
||||||
|
# downsampling
|
||||||
|
hs = [self.conv_in(x)]
|
||||||
|
for i_level in range(self.num_resolutions):
|
||||||
|
for i_block in range(self.num_res_blocks):
|
||||||
|
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||||
|
if len(self.down[i_level].attn) > 0:
|
||||||
|
h = self.down[i_level].attn[i_block](h)
|
||||||
|
hs.append(h)
|
||||||
|
if i_level != self.num_resolutions-1:
|
||||||
|
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||||
|
|
||||||
|
# middle
|
||||||
|
h = hs[-1]
|
||||||
|
h = self.mid.block_1(h, temb)
|
||||||
|
h = self.mid.attn_1(h)
|
||||||
|
h = self.mid.block_2(h, temb)
|
||||||
|
|
||||||
|
# end
|
||||||
|
h = self.norm_out(h)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
h = self.conv_out(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(nn.Module):
|
||||||
|
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||||
|
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||||
|
resolution, z_channels, give_pre_end=False, **ignorekwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.ch = ch
|
||||||
|
self.temb_ch = 0
|
||||||
|
self.num_resolutions = len(ch_mult)
|
||||||
|
self.num_res_blocks = num_res_blocks
|
||||||
|
self.resolution = resolution
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.give_pre_end = give_pre_end
|
||||||
|
|
||||||
|
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||||
|
in_ch_mult = (1,)+tuple(ch_mult)
|
||||||
|
block_in = ch*ch_mult[self.num_resolutions-1]
|
||||||
|
curr_res = resolution // 2**(self.num_resolutions-1)
|
||||||
|
self.z_shape = (1,z_channels,curr_res,curr_res)
|
||||||
|
print("Working with z of shape {} = {} dimensions.".format(
|
||||||
|
self.z_shape, np.prod(self.z_shape)))
|
||||||
|
|
||||||
|
# z to block_in
|
||||||
|
self.conv_in = torch.nn.Conv2d(z_channels,
|
||||||
|
block_in,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
# middle
|
||||||
|
self.mid = nn.Module()
|
||||||
|
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_in,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout)
|
||||||
|
self.mid.attn_1 = AttnBlock(block_in)
|
||||||
|
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_in,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout)
|
||||||
|
|
||||||
|
# upsampling
|
||||||
|
self.up = nn.ModuleList()
|
||||||
|
for i_level in reversed(range(self.num_resolutions)):
|
||||||
|
block = nn.ModuleList()
|
||||||
|
attn = nn.ModuleList()
|
||||||
|
block_out = ch*ch_mult[i_level]
|
||||||
|
for i_block in range(self.num_res_blocks+1):
|
||||||
|
block.append(ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_out,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout))
|
||||||
|
block_in = block_out
|
||||||
|
if curr_res in attn_resolutions:
|
||||||
|
attn.append(AttnBlock(block_in))
|
||||||
|
up = nn.Module()
|
||||||
|
up.block = block
|
||||||
|
up.attn = attn
|
||||||
|
if i_level != 0:
|
||||||
|
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||||
|
curr_res = curr_res * 2
|
||||||
|
self.up.insert(0, up) # prepend to get consistent order
|
||||||
|
|
||||||
|
# end
|
||||||
|
self.norm_out = Normalize(block_in)
|
||||||
|
self.conv_out = torch.nn.Conv2d(block_in,
|
||||||
|
out_ch,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
def forward(self, z):
|
||||||
|
#assert z.shape[1:] == self.z_shape[1:]
|
||||||
|
self.last_z_shape = z.shape
|
||||||
|
|
||||||
|
# timestep embedding
|
||||||
|
temb = None
|
||||||
|
|
||||||
|
# z to block_in
|
||||||
|
h = self.conv_in(z)
|
||||||
|
|
||||||
|
# middle
|
||||||
|
h = self.mid.block_1(h, temb)
|
||||||
|
h = self.mid.attn_1(h)
|
||||||
|
h = self.mid.block_2(h, temb)
|
||||||
|
|
||||||
|
# upsampling
|
||||||
|
for i_level in reversed(range(self.num_resolutions)):
|
||||||
|
for i_block in range(self.num_res_blocks+1):
|
||||||
|
h = self.up[i_level].block[i_block](h, temb)
|
||||||
|
if len(self.up[i_level].attn) > 0:
|
||||||
|
h = self.up[i_level].attn[i_block](h)
|
||||||
|
if i_level != 0:
|
||||||
|
h = self.up[i_level].upsample(h)
|
||||||
|
|
||||||
|
# end
|
||||||
|
if self.give_pre_end:
|
||||||
|
return h
|
||||||
|
|
||||||
|
h = self.norm_out(h)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
h = self.conv_out(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
class VUNet(nn.Module):
|
||||||
|
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||||
|
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
||||||
|
in_channels, c_channels,
|
||||||
|
resolution, z_channels, use_timestep=False, **ignore_kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.ch = ch
|
||||||
|
self.temb_ch = self.ch*4
|
||||||
|
self.num_resolutions = len(ch_mult)
|
||||||
|
self.num_res_blocks = num_res_blocks
|
||||||
|
self.resolution = resolution
|
||||||
|
|
||||||
|
self.use_timestep = use_timestep
|
||||||
|
if self.use_timestep:
|
||||||
|
# timestep embedding
|
||||||
|
self.temb = nn.Module()
|
||||||
|
self.temb.dense = nn.ModuleList([
|
||||||
|
torch.nn.Linear(self.ch,
|
||||||
|
self.temb_ch),
|
||||||
|
torch.nn.Linear(self.temb_ch,
|
||||||
|
self.temb_ch),
|
||||||
|
])
|
||||||
|
|
||||||
|
# downsampling
|
||||||
|
self.conv_in = torch.nn.Conv2d(c_channels,
|
||||||
|
self.ch,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
curr_res = resolution
|
||||||
|
in_ch_mult = (1,)+tuple(ch_mult)
|
||||||
|
self.down = nn.ModuleList()
|
||||||
|
for i_level in range(self.num_resolutions):
|
||||||
|
block = nn.ModuleList()
|
||||||
|
attn = nn.ModuleList()
|
||||||
|
block_in = ch*in_ch_mult[i_level]
|
||||||
|
block_out = ch*ch_mult[i_level]
|
||||||
|
for i_block in range(self.num_res_blocks):
|
||||||
|
block.append(ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_out,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout))
|
||||||
|
block_in = block_out
|
||||||
|
if curr_res in attn_resolutions:
|
||||||
|
attn.append(AttnBlock(block_in))
|
||||||
|
down = nn.Module()
|
||||||
|
down.block = block
|
||||||
|
down.attn = attn
|
||||||
|
if i_level != self.num_resolutions-1:
|
||||||
|
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||||
|
curr_res = curr_res // 2
|
||||||
|
self.down.append(down)
|
||||||
|
|
||||||
|
self.z_in = torch.nn.Conv2d(z_channels,
|
||||||
|
block_in,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0)
|
||||||
|
# middle
|
||||||
|
self.mid = nn.Module()
|
||||||
|
self.mid.block_1 = ResnetBlock(in_channels=2*block_in,
|
||||||
|
out_channels=block_in,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout)
|
||||||
|
self.mid.attn_1 = AttnBlock(block_in)
|
||||||
|
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_in,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout)
|
||||||
|
|
||||||
|
# upsampling
|
||||||
|
self.up = nn.ModuleList()
|
||||||
|
for i_level in reversed(range(self.num_resolutions)):
|
||||||
|
block = nn.ModuleList()
|
||||||
|
attn = nn.ModuleList()
|
||||||
|
block_out = ch*ch_mult[i_level]
|
||||||
|
skip_in = ch*ch_mult[i_level]
|
||||||
|
for i_block in range(self.num_res_blocks+1):
|
||||||
|
if i_block == self.num_res_blocks:
|
||||||
|
skip_in = ch*in_ch_mult[i_level]
|
||||||
|
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
||||||
|
out_channels=block_out,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout))
|
||||||
|
block_in = block_out
|
||||||
|
if curr_res in attn_resolutions:
|
||||||
|
attn.append(AttnBlock(block_in))
|
||||||
|
up = nn.Module()
|
||||||
|
up.block = block
|
||||||
|
up.attn = attn
|
||||||
|
if i_level != 0:
|
||||||
|
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||||
|
curr_res = curr_res * 2
|
||||||
|
self.up.insert(0, up) # prepend to get consistent order
|
||||||
|
|
||||||
|
# end
|
||||||
|
self.norm_out = Normalize(block_in)
|
||||||
|
self.conv_out = torch.nn.Conv2d(block_in,
|
||||||
|
out_ch,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
|
||||||
|
def forward(self, x, z):
|
||||||
|
#assert x.shape[2] == x.shape[3] == self.resolution
|
||||||
|
|
||||||
|
if self.use_timestep:
|
||||||
|
# timestep embedding
|
||||||
|
assert t is not None
|
||||||
|
temb = get_timestep_embedding(t, self.ch)
|
||||||
|
temb = self.temb.dense[0](temb)
|
||||||
|
temb = nonlinearity(temb)
|
||||||
|
temb = self.temb.dense[1](temb)
|
||||||
|
else:
|
||||||
|
temb = None
|
||||||
|
|
||||||
|
# downsampling
|
||||||
|
hs = [self.conv_in(x)]
|
||||||
|
for i_level in range(self.num_resolutions):
|
||||||
|
for i_block in range(self.num_res_blocks):
|
||||||
|
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||||
|
if len(self.down[i_level].attn) > 0:
|
||||||
|
h = self.down[i_level].attn[i_block](h)
|
||||||
|
hs.append(h)
|
||||||
|
if i_level != self.num_resolutions-1:
|
||||||
|
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||||
|
|
||||||
|
# middle
|
||||||
|
h = hs[-1]
|
||||||
|
z = self.z_in(z)
|
||||||
|
h = torch.cat((h,z),dim=1)
|
||||||
|
h = self.mid.block_1(h, temb)
|
||||||
|
h = self.mid.attn_1(h)
|
||||||
|
h = self.mid.block_2(h, temb)
|
||||||
|
|
||||||
|
# upsampling
|
||||||
|
for i_level in reversed(range(self.num_resolutions)):
|
||||||
|
for i_block in range(self.num_res_blocks+1):
|
||||||
|
h = self.up[i_level].block[i_block](
|
||||||
|
torch.cat([h, hs.pop()], dim=1), temb)
|
||||||
|
if len(self.up[i_level].attn) > 0:
|
||||||
|
h = self.up[i_level].attn[i_block](h)
|
||||||
|
if i_level != 0:
|
||||||
|
h = self.up[i_level].upsample(h)
|
||||||
|
|
||||||
|
# end
|
||||||
|
h = self.norm_out(h)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
h = self.conv_out(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
class SimpleDecoder(nn.Module):
|
||||||
|
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
||||||
|
ResnetBlock(in_channels=in_channels,
|
||||||
|
out_channels=2 * in_channels,
|
||||||
|
temb_channels=0, dropout=0.0),
|
||||||
|
ResnetBlock(in_channels=2 * in_channels,
|
||||||
|
out_channels=4 * in_channels,
|
||||||
|
temb_channels=0, dropout=0.0),
|
||||||
|
ResnetBlock(in_channels=4 * in_channels,
|
||||||
|
out_channels=2 * in_channels,
|
||||||
|
temb_channels=0, dropout=0.0),
|
||||||
|
nn.Conv2d(2*in_channels, in_channels, 1),
|
||||||
|
Upsample(in_channels, with_conv=True)])
|
||||||
|
# end
|
||||||
|
self.norm_out = Normalize(in_channels)
|
||||||
|
self.conv_out = torch.nn.Conv2d(in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
for i, layer in enumerate(self.model):
|
||||||
|
if i in [1,2,3]:
|
||||||
|
x = layer(x, None)
|
||||||
|
else:
|
||||||
|
x = layer(x)
|
||||||
|
|
||||||
|
h = self.norm_out(x)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
x = self.conv_out(h)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class UpsampleDecoder(nn.Module):
|
||||||
|
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
||||||
|
ch_mult=(2,2), dropout=0.0):
|
||||||
|
super().__init__()
|
||||||
|
# upsampling
|
||||||
|
self.temb_ch = 0
|
||||||
|
self.num_resolutions = len(ch_mult)
|
||||||
|
self.num_res_blocks = num_res_blocks
|
||||||
|
block_in = in_channels
|
||||||
|
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
||||||
|
self.res_blocks = nn.ModuleList()
|
||||||
|
self.upsample_blocks = nn.ModuleList()
|
||||||
|
for i_level in range(self.num_resolutions):
|
||||||
|
res_block = []
|
||||||
|
block_out = ch * ch_mult[i_level]
|
||||||
|
for i_block in range(self.num_res_blocks + 1):
|
||||||
|
res_block.append(ResnetBlock(in_channels=block_in,
|
||||||
|
out_channels=block_out,
|
||||||
|
temb_channels=self.temb_ch,
|
||||||
|
dropout=dropout))
|
||||||
|
block_in = block_out
|
||||||
|
self.res_blocks.append(nn.ModuleList(res_block))
|
||||||
|
if i_level != self.num_resolutions - 1:
|
||||||
|
self.upsample_blocks.append(Upsample(block_in, True))
|
||||||
|
curr_res = curr_res * 2
|
||||||
|
|
||||||
|
# end
|
||||||
|
self.norm_out = Normalize(block_in)
|
||||||
|
self.conv_out = torch.nn.Conv2d(block_in,
|
||||||
|
out_channels,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# upsampling
|
||||||
|
h = x
|
||||||
|
for k, i_level in enumerate(range(self.num_resolutions)):
|
||||||
|
for i_block in range(self.num_res_blocks + 1):
|
||||||
|
h = self.res_blocks[i_level][i_block](h, None)
|
||||||
|
if i_level != self.num_resolutions - 1:
|
||||||
|
h = self.upsample_blocks[k](h)
|
||||||
|
h = self.norm_out(h)
|
||||||
|
h = nonlinearity(h)
|
||||||
|
h = self.conv_out(h)
|
||||||
|
return h
|
||||||
|
|
||||||
@@ -0,0 +1,67 @@
|
|||||||
|
import functools
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
from taming.modules.util import ActNorm
|
||||||
|
|
||||||
|
|
||||||
|
def weights_init(m):
|
||||||
|
classname = m.__class__.__name__
|
||||||
|
if classname.find('Conv') != -1:
|
||||||
|
nn.init.normal_(m.weight.data, 0.0, 0.02)
|
||||||
|
elif classname.find('BatchNorm') != -1:
|
||||||
|
nn.init.normal_(m.weight.data, 1.0, 0.02)
|
||||||
|
nn.init.constant_(m.bias.data, 0)
|
||||||
|
|
||||||
|
|
||||||
|
class NLayerDiscriminator(nn.Module):
|
||||||
|
"""Defines a PatchGAN discriminator as in Pix2Pix
|
||||||
|
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
|
||||||
|
"""
|
||||||
|
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False):
|
||||||
|
"""Construct a PatchGAN discriminator
|
||||||
|
Parameters:
|
||||||
|
input_nc (int) -- the number of channels in input images
|
||||||
|
ndf (int) -- the number of filters in the last conv layer
|
||||||
|
n_layers (int) -- the number of conv layers in the discriminator
|
||||||
|
norm_layer -- normalization layer
|
||||||
|
"""
|
||||||
|
super(NLayerDiscriminator, self).__init__()
|
||||||
|
if not use_actnorm:
|
||||||
|
norm_layer = nn.BatchNorm2d
|
||||||
|
else:
|
||||||
|
norm_layer = ActNorm
|
||||||
|
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
|
||||||
|
use_bias = norm_layer.func != nn.BatchNorm2d
|
||||||
|
else:
|
||||||
|
use_bias = norm_layer != nn.BatchNorm2d
|
||||||
|
|
||||||
|
kw = 4
|
||||||
|
padw = 1
|
||||||
|
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
|
||||||
|
nf_mult = 1
|
||||||
|
nf_mult_prev = 1
|
||||||
|
for n in range(1, n_layers): # gradually increase the number of filters
|
||||||
|
nf_mult_prev = nf_mult
|
||||||
|
nf_mult = min(2 ** n, 8)
|
||||||
|
sequence += [
|
||||||
|
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
|
||||||
|
norm_layer(ndf * nf_mult),
|
||||||
|
nn.LeakyReLU(0.2, True)
|
||||||
|
]
|
||||||
|
|
||||||
|
nf_mult_prev = nf_mult
|
||||||
|
nf_mult = min(2 ** n_layers, 8)
|
||||||
|
sequence += [
|
||||||
|
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
|
||||||
|
norm_layer(ndf * nf_mult),
|
||||||
|
nn.LeakyReLU(0.2, True)
|
||||||
|
]
|
||||||
|
|
||||||
|
sequence += [
|
||||||
|
nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
|
||||||
|
self.main = nn.Sequential(*sequence)
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
"""Standard forward."""
|
||||||
|
return self.main(input)
|
||||||
@@ -0,0 +1,2 @@
|
|||||||
|
from taming.modules.losses.vqperceptual import DummyLoss
|
||||||
|
|
||||||
123
OCR_earsing/latent_diffusion/taming/modules/losses/lpips.py
Normal file
123
OCR_earsing/latent_diffusion/taming/modules/losses/lpips.py
Normal file
@@ -0,0 +1,123 @@
|
|||||||
|
"""Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models"""
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torchvision import models
|
||||||
|
from collections import namedtuple
|
||||||
|
|
||||||
|
from taming.util import get_ckpt_path
|
||||||
|
|
||||||
|
|
||||||
|
class LPIPS(nn.Module):
|
||||||
|
# Learned perceptual metric
|
||||||
|
def __init__(self, use_dropout=True):
|
||||||
|
super().__init__()
|
||||||
|
self.scaling_layer = ScalingLayer()
|
||||||
|
self.chns = [64, 128, 256, 512, 512] # vg16 features
|
||||||
|
self.net = vgg16(pretrained=True, requires_grad=False)
|
||||||
|
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
|
||||||
|
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
|
||||||
|
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
|
||||||
|
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
|
||||||
|
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
|
||||||
|
self.load_from_pretrained()
|
||||||
|
for param in self.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
def load_from_pretrained(self, name="vgg_lpips"):
|
||||||
|
ckpt = get_ckpt_path(name, "taming/modules/autoencoder/lpips")
|
||||||
|
self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
|
||||||
|
print("loaded pretrained LPIPS loss from {}".format(ckpt))
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_pretrained(cls, name="vgg_lpips"):
|
||||||
|
if name != "vgg_lpips":
|
||||||
|
raise NotImplementedError
|
||||||
|
model = cls()
|
||||||
|
ckpt = get_ckpt_path(name)
|
||||||
|
model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
|
||||||
|
return model
|
||||||
|
|
||||||
|
def forward(self, input, target):
|
||||||
|
in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
|
||||||
|
outs0, outs1 = self.net(in0_input), self.net(in1_input)
|
||||||
|
feats0, feats1, diffs = {}, {}, {}
|
||||||
|
lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
|
||||||
|
for kk in range(len(self.chns)):
|
||||||
|
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
|
||||||
|
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
|
||||||
|
|
||||||
|
res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))]
|
||||||
|
val = res[0]
|
||||||
|
for l in range(1, len(self.chns)):
|
||||||
|
val += res[l]
|
||||||
|
return val
|
||||||
|
|
||||||
|
|
||||||
|
class ScalingLayer(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(ScalingLayer, self).__init__()
|
||||||
|
self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
|
||||||
|
self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])
|
||||||
|
|
||||||
|
def forward(self, inp):
|
||||||
|
return (inp - self.shift) / self.scale
|
||||||
|
|
||||||
|
|
||||||
|
class NetLinLayer(nn.Module):
|
||||||
|
""" A single linear layer which does a 1x1 conv """
|
||||||
|
def __init__(self, chn_in, chn_out=1, use_dropout=False):
|
||||||
|
super(NetLinLayer, self).__init__()
|
||||||
|
layers = [nn.Dropout(), ] if (use_dropout) else []
|
||||||
|
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
|
||||||
|
self.model = nn.Sequential(*layers)
|
||||||
|
|
||||||
|
|
||||||
|
class vgg16(torch.nn.Module):
|
||||||
|
def __init__(self, requires_grad=False, pretrained=True):
|
||||||
|
super(vgg16, self).__init__()
|
||||||
|
vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
|
||||||
|
self.slice1 = torch.nn.Sequential()
|
||||||
|
self.slice2 = torch.nn.Sequential()
|
||||||
|
self.slice3 = torch.nn.Sequential()
|
||||||
|
self.slice4 = torch.nn.Sequential()
|
||||||
|
self.slice5 = torch.nn.Sequential()
|
||||||
|
self.N_slices = 5
|
||||||
|
for x in range(4):
|
||||||
|
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
||||||
|
for x in range(4, 9):
|
||||||
|
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
||||||
|
for x in range(9, 16):
|
||||||
|
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
||||||
|
for x in range(16, 23):
|
||||||
|
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
||||||
|
for x in range(23, 30):
|
||||||
|
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
||||||
|
if not requires_grad:
|
||||||
|
for param in self.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
def forward(self, X):
|
||||||
|
h = self.slice1(X)
|
||||||
|
h_relu1_2 = h
|
||||||
|
h = self.slice2(h)
|
||||||
|
h_relu2_2 = h
|
||||||
|
h = self.slice3(h)
|
||||||
|
h_relu3_3 = h
|
||||||
|
h = self.slice4(h)
|
||||||
|
h_relu4_3 = h
|
||||||
|
h = self.slice5(h)
|
||||||
|
h_relu5_3 = h
|
||||||
|
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
|
||||||
|
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def normalize_tensor(x,eps=1e-10):
|
||||||
|
norm_factor = torch.sqrt(torch.sum(x**2,dim=1,keepdim=True))
|
||||||
|
return x/(norm_factor+eps)
|
||||||
|
|
||||||
|
|
||||||
|
def spatial_average(x, keepdim=True):
|
||||||
|
return x.mean([2,3],keepdim=keepdim)
|
||||||
|
|
||||||
@@ -0,0 +1,22 @@
|
|||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
class BCELoss(nn.Module):
|
||||||
|
def forward(self, prediction, target):
|
||||||
|
loss = F.binary_cross_entropy_with_logits(prediction,target)
|
||||||
|
return loss, {}
|
||||||
|
|
||||||
|
|
||||||
|
class BCELossWithQuant(nn.Module):
|
||||||
|
def __init__(self, codebook_weight=1.):
|
||||||
|
super().__init__()
|
||||||
|
self.codebook_weight = codebook_weight
|
||||||
|
|
||||||
|
def forward(self, qloss, target, prediction, split):
|
||||||
|
bce_loss = F.binary_cross_entropy_with_logits(prediction,target)
|
||||||
|
loss = bce_loss + self.codebook_weight*qloss
|
||||||
|
return loss, {"{}/total_loss".format(split): loss.clone().detach().mean(),
|
||||||
|
"{}/bce_loss".format(split): bce_loss.detach().mean(),
|
||||||
|
"{}/quant_loss".format(split): qloss.detach().mean()
|
||||||
|
}
|
||||||
@@ -0,0 +1,136 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from taming.modules.losses.lpips import LPIPS
|
||||||
|
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
|
||||||
|
|
||||||
|
|
||||||
|
class DummyLoss(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
|
||||||
|
def adopt_weight(weight, global_step, threshold=0, value=0.):
|
||||||
|
if global_step < threshold:
|
||||||
|
weight = value
|
||||||
|
return weight
|
||||||
|
|
||||||
|
|
||||||
|
def hinge_d_loss(logits_real, logits_fake):
|
||||||
|
loss_real = torch.mean(F.relu(1. - logits_real))
|
||||||
|
loss_fake = torch.mean(F.relu(1. + logits_fake))
|
||||||
|
d_loss = 0.5 * (loss_real + loss_fake)
|
||||||
|
return d_loss
|
||||||
|
|
||||||
|
|
||||||
|
def vanilla_d_loss(logits_real, logits_fake):
|
||||||
|
d_loss = 0.5 * (
|
||||||
|
torch.mean(torch.nn.functional.softplus(-logits_real)) +
|
||||||
|
torch.mean(torch.nn.functional.softplus(logits_fake)))
|
||||||
|
return d_loss
|
||||||
|
|
||||||
|
|
||||||
|
class VQLPIPSWithDiscriminator(nn.Module):
|
||||||
|
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
|
||||||
|
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
||||||
|
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
||||||
|
disc_ndf=64, disc_loss="hinge"):
|
||||||
|
super().__init__()
|
||||||
|
assert disc_loss in ["hinge", "vanilla"]
|
||||||
|
self.codebook_weight = codebook_weight
|
||||||
|
self.pixel_weight = pixelloss_weight
|
||||||
|
self.perceptual_loss = LPIPS().eval()
|
||||||
|
self.perceptual_weight = perceptual_weight
|
||||||
|
|
||||||
|
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
||||||
|
n_layers=disc_num_layers,
|
||||||
|
use_actnorm=use_actnorm,
|
||||||
|
ndf=disc_ndf
|
||||||
|
).apply(weights_init)
|
||||||
|
self.discriminator_iter_start = disc_start
|
||||||
|
if disc_loss == "hinge":
|
||||||
|
self.disc_loss = hinge_d_loss
|
||||||
|
elif disc_loss == "vanilla":
|
||||||
|
self.disc_loss = vanilla_d_loss
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
|
||||||
|
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
|
||||||
|
self.disc_factor = disc_factor
|
||||||
|
self.discriminator_weight = disc_weight
|
||||||
|
self.disc_conditional = disc_conditional
|
||||||
|
|
||||||
|
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
||||||
|
if last_layer is not None:
|
||||||
|
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
||||||
|
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
||||||
|
else:
|
||||||
|
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
||||||
|
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
||||||
|
|
||||||
|
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
||||||
|
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
||||||
|
d_weight = d_weight * self.discriminator_weight
|
||||||
|
return d_weight
|
||||||
|
|
||||||
|
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
|
||||||
|
global_step, last_layer=None, cond=None, split="train"):
|
||||||
|
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
||||||
|
if self.perceptual_weight > 0:
|
||||||
|
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
||||||
|
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
||||||
|
else:
|
||||||
|
p_loss = torch.tensor([0.0])
|
||||||
|
|
||||||
|
nll_loss = rec_loss
|
||||||
|
#nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
||||||
|
nll_loss = torch.mean(nll_loss)
|
||||||
|
|
||||||
|
# now the GAN part
|
||||||
|
if optimizer_idx == 0:
|
||||||
|
# generator update
|
||||||
|
if cond is None:
|
||||||
|
assert not self.disc_conditional
|
||||||
|
logits_fake = self.discriminator(reconstructions.contiguous())
|
||||||
|
else:
|
||||||
|
assert self.disc_conditional
|
||||||
|
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
||||||
|
g_loss = -torch.mean(logits_fake)
|
||||||
|
|
||||||
|
try:
|
||||||
|
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
||||||
|
except RuntimeError:
|
||||||
|
assert not self.training
|
||||||
|
d_weight = torch.tensor(0.0)
|
||||||
|
|
||||||
|
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
||||||
|
loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
|
||||||
|
|
||||||
|
log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
|
||||||
|
"{}/quant_loss".format(split): codebook_loss.detach().mean(),
|
||||||
|
"{}/nll_loss".format(split): nll_loss.detach().mean(),
|
||||||
|
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
||||||
|
"{}/p_loss".format(split): p_loss.detach().mean(),
|
||||||
|
"{}/d_weight".format(split): d_weight.detach(),
|
||||||
|
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
||||||
|
"{}/g_loss".format(split): g_loss.detach().mean(),
|
||||||
|
}
|
||||||
|
return loss, log
|
||||||
|
|
||||||
|
if optimizer_idx == 1:
|
||||||
|
# second pass for discriminator update
|
||||||
|
if cond is None:
|
||||||
|
logits_real = self.discriminator(inputs.contiguous().detach())
|
||||||
|
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
||||||
|
else:
|
||||||
|
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
||||||
|
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
||||||
|
|
||||||
|
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
||||||
|
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
||||||
|
|
||||||
|
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
||||||
|
"{}/logits_real".format(split): logits_real.detach().mean(),
|
||||||
|
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
||||||
|
}
|
||||||
|
return d_loss, log
|
||||||
31
OCR_earsing/latent_diffusion/taming/modules/misc/coord.py
Normal file
31
OCR_earsing/latent_diffusion/taming/modules/misc/coord.py
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
class CoordStage(object):
|
||||||
|
def __init__(self, n_embed, down_factor):
|
||||||
|
self.n_embed = n_embed
|
||||||
|
self.down_factor = down_factor
|
||||||
|
|
||||||
|
def eval(self):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def encode(self, c):
|
||||||
|
"""fake vqmodel interface"""
|
||||||
|
assert 0.0 <= c.min() and c.max() <= 1.0
|
||||||
|
b,ch,h,w = c.shape
|
||||||
|
assert ch == 1
|
||||||
|
|
||||||
|
c = torch.nn.functional.interpolate(c, scale_factor=1/self.down_factor,
|
||||||
|
mode="area")
|
||||||
|
c = c.clamp(0.0, 1.0)
|
||||||
|
c = self.n_embed*c
|
||||||
|
c_quant = c.round()
|
||||||
|
c_ind = c_quant.to(dtype=torch.long)
|
||||||
|
|
||||||
|
info = None, None, c_ind
|
||||||
|
return c_quant, None, info
|
||||||
|
|
||||||
|
def decode(self, c):
|
||||||
|
c = c/self.n_embed
|
||||||
|
c = torch.nn.functional.interpolate(c, scale_factor=self.down_factor,
|
||||||
|
mode="nearest")
|
||||||
|
return c
|
||||||
@@ -0,0 +1,415 @@
|
|||||||
|
"""
|
||||||
|
taken from: https://github.com/karpathy/minGPT/
|
||||||
|
GPT model:
|
||||||
|
- the initial stem consists of a combination of token encoding and a positional encoding
|
||||||
|
- the meat of it is a uniform sequence of Transformer blocks
|
||||||
|
- each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block
|
||||||
|
- all blocks feed into a central residual pathway similar to resnets
|
||||||
|
- the final decoder is a linear projection into a vanilla Softmax classifier
|
||||||
|
"""
|
||||||
|
|
||||||
|
import math
|
||||||
|
import logging
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
from transformers import top_k_top_p_filtering
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class GPTConfig:
|
||||||
|
""" base GPT config, params common to all GPT versions """
|
||||||
|
embd_pdrop = 0.1
|
||||||
|
resid_pdrop = 0.1
|
||||||
|
attn_pdrop = 0.1
|
||||||
|
|
||||||
|
def __init__(self, vocab_size, block_size, **kwargs):
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.block_size = block_size
|
||||||
|
for k,v in kwargs.items():
|
||||||
|
setattr(self, k, v)
|
||||||
|
|
||||||
|
|
||||||
|
class GPT1Config(GPTConfig):
|
||||||
|
""" GPT-1 like network roughly 125M params """
|
||||||
|
n_layer = 12
|
||||||
|
n_head = 12
|
||||||
|
n_embd = 768
|
||||||
|
|
||||||
|
|
||||||
|
class CausalSelfAttention(nn.Module):
|
||||||
|
"""
|
||||||
|
A vanilla multi-head masked self-attention layer with a projection at the end.
|
||||||
|
It is possible to use torch.nn.MultiheadAttention here but I am including an
|
||||||
|
explicit implementation here to show that there is nothing too scary here.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__()
|
||||||
|
assert config.n_embd % config.n_head == 0
|
||||||
|
# key, query, value projections for all heads
|
||||||
|
self.key = nn.Linear(config.n_embd, config.n_embd)
|
||||||
|
self.query = nn.Linear(config.n_embd, config.n_embd)
|
||||||
|
self.value = nn.Linear(config.n_embd, config.n_embd)
|
||||||
|
# regularization
|
||||||
|
self.attn_drop = nn.Dropout(config.attn_pdrop)
|
||||||
|
self.resid_drop = nn.Dropout(config.resid_pdrop)
|
||||||
|
# output projection
|
||||||
|
self.proj = nn.Linear(config.n_embd, config.n_embd)
|
||||||
|
# causal mask to ensure that attention is only applied to the left in the input sequence
|
||||||
|
mask = torch.tril(torch.ones(config.block_size,
|
||||||
|
config.block_size))
|
||||||
|
if hasattr(config, "n_unmasked"):
|
||||||
|
mask[:config.n_unmasked, :config.n_unmasked] = 1
|
||||||
|
self.register_buffer("mask", mask.view(1, 1, config.block_size, config.block_size))
|
||||||
|
self.n_head = config.n_head
|
||||||
|
|
||||||
|
def forward(self, x, layer_past=None):
|
||||||
|
B, T, C = x.size()
|
||||||
|
|
||||||
|
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
||||||
|
k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
||||||
|
q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
||||||
|
v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
||||||
|
|
||||||
|
present = torch.stack((k, v))
|
||||||
|
if layer_past is not None:
|
||||||
|
past_key, past_value = layer_past
|
||||||
|
k = torch.cat((past_key, k), dim=-2)
|
||||||
|
v = torch.cat((past_value, v), dim=-2)
|
||||||
|
|
||||||
|
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
||||||
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
||||||
|
if layer_past is None:
|
||||||
|
att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))
|
||||||
|
|
||||||
|
att = F.softmax(att, dim=-1)
|
||||||
|
att = self.attn_drop(att)
|
||||||
|
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
||||||
|
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
||||||
|
|
||||||
|
# output projection
|
||||||
|
y = self.resid_drop(self.proj(y))
|
||||||
|
return y, present # TODO: check that this does not break anything
|
||||||
|
|
||||||
|
|
||||||
|
class Block(nn.Module):
|
||||||
|
""" an unassuming Transformer block """
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__()
|
||||||
|
self.ln1 = nn.LayerNorm(config.n_embd)
|
||||||
|
self.ln2 = nn.LayerNorm(config.n_embd)
|
||||||
|
self.attn = CausalSelfAttention(config)
|
||||||
|
self.mlp = nn.Sequential(
|
||||||
|
nn.Linear(config.n_embd, 4 * config.n_embd),
|
||||||
|
nn.GELU(), # nice
|
||||||
|
nn.Linear(4 * config.n_embd, config.n_embd),
|
||||||
|
nn.Dropout(config.resid_pdrop),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x, layer_past=None, return_present=False):
|
||||||
|
# TODO: check that training still works
|
||||||
|
if return_present: assert not self.training
|
||||||
|
# layer past: tuple of length two with B, nh, T, hs
|
||||||
|
attn, present = self.attn(self.ln1(x), layer_past=layer_past)
|
||||||
|
|
||||||
|
x = x + attn
|
||||||
|
x = x + self.mlp(self.ln2(x))
|
||||||
|
if layer_past is not None or return_present:
|
||||||
|
return x, present
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class GPT(nn.Module):
|
||||||
|
""" the full GPT language model, with a context size of block_size """
|
||||||
|
def __init__(self, vocab_size, block_size, n_layer=12, n_head=8, n_embd=256,
|
||||||
|
embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0):
|
||||||
|
super().__init__()
|
||||||
|
config = GPTConfig(vocab_size=vocab_size, block_size=block_size,
|
||||||
|
embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop,
|
||||||
|
n_layer=n_layer, n_head=n_head, n_embd=n_embd,
|
||||||
|
n_unmasked=n_unmasked)
|
||||||
|
# input embedding stem
|
||||||
|
self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd)
|
||||||
|
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
|
||||||
|
self.drop = nn.Dropout(config.embd_pdrop)
|
||||||
|
# transformer
|
||||||
|
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)])
|
||||||
|
# decoder head
|
||||||
|
self.ln_f = nn.LayerNorm(config.n_embd)
|
||||||
|
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
||||||
|
self.block_size = config.block_size
|
||||||
|
self.apply(self._init_weights)
|
||||||
|
self.config = config
|
||||||
|
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
|
||||||
|
|
||||||
|
def get_block_size(self):
|
||||||
|
return self.block_size
|
||||||
|
|
||||||
|
def _init_weights(self, module):
|
||||||
|
if isinstance(module, (nn.Linear, nn.Embedding)):
|
||||||
|
module.weight.data.normal_(mean=0.0, std=0.02)
|
||||||
|
if isinstance(module, nn.Linear) and module.bias is not None:
|
||||||
|
module.bias.data.zero_()
|
||||||
|
elif isinstance(module, nn.LayerNorm):
|
||||||
|
module.bias.data.zero_()
|
||||||
|
module.weight.data.fill_(1.0)
|
||||||
|
|
||||||
|
def forward(self, idx, embeddings=None, targets=None):
|
||||||
|
# forward the GPT model
|
||||||
|
token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector
|
||||||
|
|
||||||
|
if embeddings is not None: # prepend explicit embeddings
|
||||||
|
token_embeddings = torch.cat((embeddings, token_embeddings), dim=1)
|
||||||
|
|
||||||
|
t = token_embeddings.shape[1]
|
||||||
|
assert t <= self.block_size, "Cannot forward, model block size is exhausted."
|
||||||
|
position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector
|
||||||
|
x = self.drop(token_embeddings + position_embeddings)
|
||||||
|
x = self.blocks(x)
|
||||||
|
x = self.ln_f(x)
|
||||||
|
logits = self.head(x)
|
||||||
|
|
||||||
|
# if we are given some desired targets also calculate the loss
|
||||||
|
loss = None
|
||||||
|
if targets is not None:
|
||||||
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
||||||
|
|
||||||
|
return logits, loss
|
||||||
|
|
||||||
|
def forward_with_past(self, idx, embeddings=None, targets=None, past=None, past_length=None):
|
||||||
|
# inference only
|
||||||
|
assert not self.training
|
||||||
|
token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector
|
||||||
|
if embeddings is not None: # prepend explicit embeddings
|
||||||
|
token_embeddings = torch.cat((embeddings, token_embeddings), dim=1)
|
||||||
|
|
||||||
|
if past is not None:
|
||||||
|
assert past_length is not None
|
||||||
|
past = torch.cat(past, dim=-2) # n_layer, 2, b, nh, len_past, dim_head
|
||||||
|
past_shape = list(past.shape)
|
||||||
|
expected_shape = [self.config.n_layer, 2, idx.shape[0], self.config.n_head, past_length, self.config.n_embd//self.config.n_head]
|
||||||
|
assert past_shape == expected_shape, f"{past_shape} =/= {expected_shape}"
|
||||||
|
position_embeddings = self.pos_emb[:, past_length, :] # each position maps to a (learnable) vector
|
||||||
|
else:
|
||||||
|
position_embeddings = self.pos_emb[:, :token_embeddings.shape[1], :]
|
||||||
|
|
||||||
|
x = self.drop(token_embeddings + position_embeddings)
|
||||||
|
presents = [] # accumulate over layers
|
||||||
|
for i, block in enumerate(self.blocks):
|
||||||
|
x, present = block(x, layer_past=past[i, ...] if past is not None else None, return_present=True)
|
||||||
|
presents.append(present)
|
||||||
|
|
||||||
|
x = self.ln_f(x)
|
||||||
|
logits = self.head(x)
|
||||||
|
# if we are given some desired targets also calculate the loss
|
||||||
|
loss = None
|
||||||
|
if targets is not None:
|
||||||
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
||||||
|
|
||||||
|
return logits, loss, torch.stack(presents) # _, _, n_layer, 2, b, nh, 1, dim_head
|
||||||
|
|
||||||
|
|
||||||
|
class DummyGPT(nn.Module):
|
||||||
|
# for debugging
|
||||||
|
def __init__(self, add_value=1):
|
||||||
|
super().__init__()
|
||||||
|
self.add_value = add_value
|
||||||
|
|
||||||
|
def forward(self, idx):
|
||||||
|
return idx + self.add_value, None
|
||||||
|
|
||||||
|
|
||||||
|
class CodeGPT(nn.Module):
|
||||||
|
"""Takes in semi-embeddings"""
|
||||||
|
def __init__(self, vocab_size, block_size, in_channels, n_layer=12, n_head=8, n_embd=256,
|
||||||
|
embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0):
|
||||||
|
super().__init__()
|
||||||
|
config = GPTConfig(vocab_size=vocab_size, block_size=block_size,
|
||||||
|
embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop,
|
||||||
|
n_layer=n_layer, n_head=n_head, n_embd=n_embd,
|
||||||
|
n_unmasked=n_unmasked)
|
||||||
|
# input embedding stem
|
||||||
|
self.tok_emb = nn.Linear(in_channels, config.n_embd)
|
||||||
|
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
|
||||||
|
self.drop = nn.Dropout(config.embd_pdrop)
|
||||||
|
# transformer
|
||||||
|
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)])
|
||||||
|
# decoder head
|
||||||
|
self.ln_f = nn.LayerNorm(config.n_embd)
|
||||||
|
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
||||||
|
self.block_size = config.block_size
|
||||||
|
self.apply(self._init_weights)
|
||||||
|
self.config = config
|
||||||
|
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
|
||||||
|
|
||||||
|
def get_block_size(self):
|
||||||
|
return self.block_size
|
||||||
|
|
||||||
|
def _init_weights(self, module):
|
||||||
|
if isinstance(module, (nn.Linear, nn.Embedding)):
|
||||||
|
module.weight.data.normal_(mean=0.0, std=0.02)
|
||||||
|
if isinstance(module, nn.Linear) and module.bias is not None:
|
||||||
|
module.bias.data.zero_()
|
||||||
|
elif isinstance(module, nn.LayerNorm):
|
||||||
|
module.bias.data.zero_()
|
||||||
|
module.weight.data.fill_(1.0)
|
||||||
|
|
||||||
|
def forward(self, idx, embeddings=None, targets=None):
|
||||||
|
# forward the GPT model
|
||||||
|
token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector
|
||||||
|
|
||||||
|
if embeddings is not None: # prepend explicit embeddings
|
||||||
|
token_embeddings = torch.cat((embeddings, token_embeddings), dim=1)
|
||||||
|
|
||||||
|
t = token_embeddings.shape[1]
|
||||||
|
assert t <= self.block_size, "Cannot forward, model block size is exhausted."
|
||||||
|
position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector
|
||||||
|
x = self.drop(token_embeddings + position_embeddings)
|
||||||
|
x = self.blocks(x)
|
||||||
|
x = self.taming_cinln_f(x)
|
||||||
|
logits = self.head(x)
|
||||||
|
|
||||||
|
# if we are given some desired targets also calculate the loss
|
||||||
|
loss = None
|
||||||
|
if targets is not None:
|
||||||
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
||||||
|
|
||||||
|
return logits, loss
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#### sampling utils
|
||||||
|
|
||||||
|
def top_k_logits(logits, k):
|
||||||
|
v, ix = torch.topk(logits, k)
|
||||||
|
out = logits.clone()
|
||||||
|
out[out < v[:, [-1]]] = -float('Inf')
|
||||||
|
return out
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def sample(model, x, steps, temperature=1.0, sample=False, top_k=None):
|
||||||
|
"""
|
||||||
|
take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in
|
||||||
|
the sequence, feeding the predictions back into the model each time. Clearly the sampling
|
||||||
|
has quadratic complexity unlike an RNN that is only linear, and has a finite context window
|
||||||
|
of block_size, unlike an RNN that has an infinite context window.
|
||||||
|
"""
|
||||||
|
block_size = model.get_block_size()
|
||||||
|
model.eval()
|
||||||
|
for k in range(steps):
|
||||||
|
x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed
|
||||||
|
logits, _ = model(x_cond)
|
||||||
|
# pluck the logits at the final step and scale by temperature
|
||||||
|
logits = logits[:, -1, :] / temperature
|
||||||
|
# optionally crop probabilities to only the top k options
|
||||||
|
if top_k is not None:
|
||||||
|
logits = top_k_logits(logits, top_k)
|
||||||
|
# apply softmax to convert to probabilities
|
||||||
|
probs = F.softmax(logits, dim=-1)
|
||||||
|
# sample from the distribution or take the most likely
|
||||||
|
if sample:
|
||||||
|
ix = torch.multinomial(probs, num_samples=1)
|
||||||
|
else:
|
||||||
|
_, ix = torch.topk(probs, k=1, dim=-1)
|
||||||
|
# append to the sequence and continue
|
||||||
|
x = torch.cat((x, ix), dim=1)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def sample_with_past(x, model, steps, temperature=1., sample_logits=True,
|
||||||
|
top_k=None, top_p=None, callback=None):
|
||||||
|
# x is conditioning
|
||||||
|
sample = x
|
||||||
|
cond_len = x.shape[1]
|
||||||
|
past = None
|
||||||
|
for n in range(steps):
|
||||||
|
if callback is not None:
|
||||||
|
callback(n)
|
||||||
|
logits, _, present = model.forward_with_past(x, past=past, past_length=(n+cond_len-1))
|
||||||
|
if past is None:
|
||||||
|
past = [present]
|
||||||
|
else:
|
||||||
|
past.append(present)
|
||||||
|
logits = logits[:, -1, :] / temperature
|
||||||
|
if top_k is not None:
|
||||||
|
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
||||||
|
|
||||||
|
probs = F.softmax(logits, dim=-1)
|
||||||
|
if not sample_logits:
|
||||||
|
_, x = torch.topk(probs, k=1, dim=-1)
|
||||||
|
else:
|
||||||
|
x = torch.multinomial(probs, num_samples=1)
|
||||||
|
# append to the sequence and continue
|
||||||
|
sample = torch.cat((sample, x), dim=1)
|
||||||
|
del past
|
||||||
|
sample = sample[:, cond_len:] # cut conditioning off
|
||||||
|
return sample
|
||||||
|
|
||||||
|
|
||||||
|
#### clustering utils
|
||||||
|
|
||||||
|
class KMeans(nn.Module):
|
||||||
|
def __init__(self, ncluster=512, nc=3, niter=10):
|
||||||
|
super().__init__()
|
||||||
|
self.ncluster = ncluster
|
||||||
|
self.nc = nc
|
||||||
|
self.niter = niter
|
||||||
|
self.shape = (3,32,32)
|
||||||
|
self.register_buffer("C", torch.zeros(self.ncluster,nc))
|
||||||
|
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8))
|
||||||
|
|
||||||
|
def is_initialized(self):
|
||||||
|
return self.initialized.item() == 1
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def initialize(self, x):
|
||||||
|
N, D = x.shape
|
||||||
|
assert D == self.nc, D
|
||||||
|
c = x[torch.randperm(N)[:self.ncluster]] # init clusters at random
|
||||||
|
for i in range(self.niter):
|
||||||
|
# assign all pixels to the closest codebook element
|
||||||
|
a = ((x[:, None, :] - c[None, :, :])**2).sum(-1).argmin(1)
|
||||||
|
# move each codebook element to be the mean of the pixels that assigned to it
|
||||||
|
c = torch.stack([x[a==k].mean(0) for k in range(self.ncluster)])
|
||||||
|
# re-assign any poorly positioned codebook elements
|
||||||
|
nanix = torch.any(torch.isnan(c), dim=1)
|
||||||
|
ndead = nanix.sum().item()
|
||||||
|
print('done step %d/%d, re-initialized %d dead clusters' % (i+1, self.niter, ndead))
|
||||||
|
c[nanix] = x[torch.randperm(N)[:ndead]] # re-init dead clusters
|
||||||
|
|
||||||
|
self.C.copy_(c)
|
||||||
|
self.initialized.fill_(1)
|
||||||
|
|
||||||
|
|
||||||
|
def forward(self, x, reverse=False, shape=None):
|
||||||
|
if not reverse:
|
||||||
|
# flatten
|
||||||
|
bs,c,h,w = x.shape
|
||||||
|
assert c == self.nc
|
||||||
|
x = x.reshape(bs,c,h*w,1)
|
||||||
|
C = self.C.permute(1,0)
|
||||||
|
C = C.reshape(1,c,1,self.ncluster)
|
||||||
|
a = ((x-C)**2).sum(1).argmin(-1) # bs, h*w indices
|
||||||
|
return a
|
||||||
|
else:
|
||||||
|
# flatten
|
||||||
|
bs, HW = x.shape
|
||||||
|
"""
|
||||||
|
c = self.C.reshape( 1, self.nc, 1, self.ncluster)
|
||||||
|
c = c[bs*[0],:,:,:]
|
||||||
|
c = c[:,:,HW*[0],:]
|
||||||
|
x = x.reshape(bs, 1, HW, 1)
|
||||||
|
x = x[:,3*[0],:,:]
|
||||||
|
x = torch.gather(c, dim=3, index=x)
|
||||||
|
"""
|
||||||
|
x = self.C[x]
|
||||||
|
x = x.permute(0,2,1)
|
||||||
|
shape = shape if shape is not None else self.shape
|
||||||
|
x = x.reshape(bs, *shape)
|
||||||
|
|
||||||
|
return x
|
||||||
@@ -0,0 +1,248 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class AbstractPermuter(nn.Module):
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
def forward(self, x, reverse=False):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
|
class Identity(AbstractPermuter):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def forward(self, x, reverse=False):
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Subsample(AbstractPermuter):
|
||||||
|
def __init__(self, H, W):
|
||||||
|
super().__init__()
|
||||||
|
C = 1
|
||||||
|
indices = np.arange(H*W).reshape(C,H,W)
|
||||||
|
while min(H, W) > 1:
|
||||||
|
indices = indices.reshape(C,H//2,2,W//2,2)
|
||||||
|
indices = indices.transpose(0,2,4,1,3)
|
||||||
|
indices = indices.reshape(C*4,H//2, W//2)
|
||||||
|
H = H//2
|
||||||
|
W = W//2
|
||||||
|
C = C*4
|
||||||
|
assert H == W == 1
|
||||||
|
idx = torch.tensor(indices.ravel())
|
||||||
|
self.register_buffer('forward_shuffle_idx',
|
||||||
|
nn.Parameter(idx, requires_grad=False))
|
||||||
|
self.register_buffer('backward_shuffle_idx',
|
||||||
|
nn.Parameter(torch.argsort(idx), requires_grad=False))
|
||||||
|
|
||||||
|
def forward(self, x, reverse=False):
|
||||||
|
if not reverse:
|
||||||
|
return x[:, self.forward_shuffle_idx]
|
||||||
|
else:
|
||||||
|
return x[:, self.backward_shuffle_idx]
|
||||||
|
|
||||||
|
|
||||||
|
def mortonify(i, j):
|
||||||
|
"""(i,j) index to linear morton code"""
|
||||||
|
i = np.uint64(i)
|
||||||
|
j = np.uint64(j)
|
||||||
|
|
||||||
|
z = np.uint(0)
|
||||||
|
|
||||||
|
for pos in range(32):
|
||||||
|
z = (z |
|
||||||
|
((j & (np.uint64(1) << np.uint64(pos))) << np.uint64(pos)) |
|
||||||
|
((i & (np.uint64(1) << np.uint64(pos))) << np.uint64(pos+1))
|
||||||
|
)
|
||||||
|
return z
|
||||||
|
|
||||||
|
|
||||||
|
class ZCurve(AbstractPermuter):
|
||||||
|
def __init__(self, H, W):
|
||||||
|
super().__init__()
|
||||||
|
reverseidx = [np.int64(mortonify(i,j)) for i in range(H) for j in range(W)]
|
||||||
|
idx = np.argsort(reverseidx)
|
||||||
|
idx = torch.tensor(idx)
|
||||||
|
reverseidx = torch.tensor(reverseidx)
|
||||||
|
self.register_buffer('forward_shuffle_idx',
|
||||||
|
idx)
|
||||||
|
self.register_buffer('backward_shuffle_idx',
|
||||||
|
reverseidx)
|
||||||
|
|
||||||
|
def forward(self, x, reverse=False):
|
||||||
|
if not reverse:
|
||||||
|
return x[:, self.forward_shuffle_idx]
|
||||||
|
else:
|
||||||
|
return x[:, self.backward_shuffle_idx]
|
||||||
|
|
||||||
|
|
||||||
|
class SpiralOut(AbstractPermuter):
|
||||||
|
def __init__(self, H, W):
|
||||||
|
super().__init__()
|
||||||
|
assert H == W
|
||||||
|
size = W
|
||||||
|
indices = np.arange(size*size).reshape(size,size)
|
||||||
|
|
||||||
|
i0 = size//2
|
||||||
|
j0 = size//2-1
|
||||||
|
|
||||||
|
i = i0
|
||||||
|
j = j0
|
||||||
|
|
||||||
|
idx = [indices[i0, j0]]
|
||||||
|
step_mult = 0
|
||||||
|
for c in range(1, size//2+1):
|
||||||
|
step_mult += 1
|
||||||
|
# steps left
|
||||||
|
for k in range(step_mult):
|
||||||
|
i = i - 1
|
||||||
|
j = j
|
||||||
|
idx.append(indices[i, j])
|
||||||
|
|
||||||
|
# step down
|
||||||
|
for k in range(step_mult):
|
||||||
|
i = i
|
||||||
|
j = j + 1
|
||||||
|
idx.append(indices[i, j])
|
||||||
|
|
||||||
|
step_mult += 1
|
||||||
|
if c < size//2:
|
||||||
|
# step right
|
||||||
|
for k in range(step_mult):
|
||||||
|
i = i + 1
|
||||||
|
j = j
|
||||||
|
idx.append(indices[i, j])
|
||||||
|
|
||||||
|
# step up
|
||||||
|
for k in range(step_mult):
|
||||||
|
i = i
|
||||||
|
j = j - 1
|
||||||
|
idx.append(indices[i, j])
|
||||||
|
else:
|
||||||
|
# end reached
|
||||||
|
for k in range(step_mult-1):
|
||||||
|
i = i + 1
|
||||||
|
idx.append(indices[i, j])
|
||||||
|
|
||||||
|
assert len(idx) == size*size
|
||||||
|
idx = torch.tensor(idx)
|
||||||
|
self.register_buffer('forward_shuffle_idx', idx)
|
||||||
|
self.register_buffer('backward_shuffle_idx', torch.argsort(idx))
|
||||||
|
|
||||||
|
def forward(self, x, reverse=False):
|
||||||
|
if not reverse:
|
||||||
|
return x[:, self.forward_shuffle_idx]
|
||||||
|
else:
|
||||||
|
return x[:, self.backward_shuffle_idx]
|
||||||
|
|
||||||
|
|
||||||
|
class SpiralIn(AbstractPermuter):
|
||||||
|
def __init__(self, H, W):
|
||||||
|
super().__init__()
|
||||||
|
assert H == W
|
||||||
|
size = W
|
||||||
|
indices = np.arange(size*size).reshape(size,size)
|
||||||
|
|
||||||
|
i0 = size//2
|
||||||
|
j0 = size//2-1
|
||||||
|
|
||||||
|
i = i0
|
||||||
|
j = j0
|
||||||
|
|
||||||
|
idx = [indices[i0, j0]]
|
||||||
|
step_mult = 0
|
||||||
|
for c in range(1, size//2+1):
|
||||||
|
step_mult += 1
|
||||||
|
# steps left
|
||||||
|
for k in range(step_mult):
|
||||||
|
i = i - 1
|
||||||
|
j = j
|
||||||
|
idx.append(indices[i, j])
|
||||||
|
|
||||||
|
# step down
|
||||||
|
for k in range(step_mult):
|
||||||
|
i = i
|
||||||
|
j = j + 1
|
||||||
|
idx.append(indices[i, j])
|
||||||
|
|
||||||
|
step_mult += 1
|
||||||
|
if c < size//2:
|
||||||
|
# step right
|
||||||
|
for k in range(step_mult):
|
||||||
|
i = i + 1
|
||||||
|
j = j
|
||||||
|
idx.append(indices[i, j])
|
||||||
|
|
||||||
|
# step up
|
||||||
|
for k in range(step_mult):
|
||||||
|
i = i
|
||||||
|
j = j - 1
|
||||||
|
idx.append(indices[i, j])
|
||||||
|
else:
|
||||||
|
# end reached
|
||||||
|
for k in range(step_mult-1):
|
||||||
|
i = i + 1
|
||||||
|
idx.append(indices[i, j])
|
||||||
|
|
||||||
|
assert len(idx) == size*size
|
||||||
|
idx = idx[::-1]
|
||||||
|
idx = torch.tensor(idx)
|
||||||
|
self.register_buffer('forward_shuffle_idx', idx)
|
||||||
|
self.register_buffer('backward_shuffle_idx', torch.argsort(idx))
|
||||||
|
|
||||||
|
def forward(self, x, reverse=False):
|
||||||
|
if not reverse:
|
||||||
|
return x[:, self.forward_shuffle_idx]
|
||||||
|
else:
|
||||||
|
return x[:, self.backward_shuffle_idx]
|
||||||
|
|
||||||
|
|
||||||
|
class Random(nn.Module):
|
||||||
|
def __init__(self, H, W):
|
||||||
|
super().__init__()
|
||||||
|
indices = np.random.RandomState(1).permutation(H*W)
|
||||||
|
idx = torch.tensor(indices.ravel())
|
||||||
|
self.register_buffer('forward_shuffle_idx', idx)
|
||||||
|
self.register_buffer('backward_shuffle_idx', torch.argsort(idx))
|
||||||
|
|
||||||
|
def forward(self, x, reverse=False):
|
||||||
|
if not reverse:
|
||||||
|
return x[:, self.forward_shuffle_idx]
|
||||||
|
else:
|
||||||
|
return x[:, self.backward_shuffle_idx]
|
||||||
|
|
||||||
|
|
||||||
|
class AlternateParsing(AbstractPermuter):
|
||||||
|
def __init__(self, H, W):
|
||||||
|
super().__init__()
|
||||||
|
indices = np.arange(W*H).reshape(H,W)
|
||||||
|
for i in range(1, H, 2):
|
||||||
|
indices[i, :] = indices[i, ::-1]
|
||||||
|
idx = indices.flatten()
|
||||||
|
assert len(idx) == H*W
|
||||||
|
idx = torch.tensor(idx)
|
||||||
|
self.register_buffer('forward_shuffle_idx', idx)
|
||||||
|
self.register_buffer('backward_shuffle_idx', torch.argsort(idx))
|
||||||
|
|
||||||
|
def forward(self, x, reverse=False):
|
||||||
|
if not reverse:
|
||||||
|
return x[:, self.forward_shuffle_idx]
|
||||||
|
else:
|
||||||
|
return x[:, self.backward_shuffle_idx]
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
p0 = AlternateParsing(16, 16)
|
||||||
|
print(p0.forward_shuffle_idx)
|
||||||
|
print(p0.backward_shuffle_idx)
|
||||||
|
|
||||||
|
x = torch.randint(0, 768, size=(11, 256))
|
||||||
|
y = p0(x)
|
||||||
|
xre = p0(y, reverse=True)
|
||||||
|
assert torch.equal(x, xre)
|
||||||
|
|
||||||
|
p1 = SpiralOut(2, 2)
|
||||||
|
print(p1.forward_shuffle_idx)
|
||||||
|
print(p1.backward_shuffle_idx)
|
||||||
130
OCR_earsing/latent_diffusion/taming/modules/util.py
Normal file
130
OCR_earsing/latent_diffusion/taming/modules/util.py
Normal file
@@ -0,0 +1,130 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
def count_params(model):
|
||||||
|
total_params = sum(p.numel() for p in model.parameters())
|
||||||
|
return total_params
|
||||||
|
|
||||||
|
|
||||||
|
class ActNorm(nn.Module):
|
||||||
|
def __init__(self, num_features, logdet=False, affine=True,
|
||||||
|
allow_reverse_init=False):
|
||||||
|
assert affine
|
||||||
|
super().__init__()
|
||||||
|
self.logdet = logdet
|
||||||
|
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
|
||||||
|
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
|
||||||
|
self.allow_reverse_init = allow_reverse_init
|
||||||
|
|
||||||
|
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8))
|
||||||
|
|
||||||
|
def initialize(self, input):
|
||||||
|
with torch.no_grad():
|
||||||
|
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
|
||||||
|
mean = (
|
||||||
|
flatten.mean(1)
|
||||||
|
.unsqueeze(1)
|
||||||
|
.unsqueeze(2)
|
||||||
|
.unsqueeze(3)
|
||||||
|
.permute(1, 0, 2, 3)
|
||||||
|
)
|
||||||
|
std = (
|
||||||
|
flatten.std(1)
|
||||||
|
.unsqueeze(1)
|
||||||
|
.unsqueeze(2)
|
||||||
|
.unsqueeze(3)
|
||||||
|
.permute(1, 0, 2, 3)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.loc.data.copy_(-mean)
|
||||||
|
self.scale.data.copy_(1 / (std + 1e-6))
|
||||||
|
|
||||||
|
def forward(self, input, reverse=False):
|
||||||
|
if reverse:
|
||||||
|
return self.reverse(input)
|
||||||
|
if len(input.shape) == 2:
|
||||||
|
input = input[:,:,None,None]
|
||||||
|
squeeze = True
|
||||||
|
else:
|
||||||
|
squeeze = False
|
||||||
|
|
||||||
|
_, _, height, width = input.shape
|
||||||
|
|
||||||
|
if self.training and self.initialized.item() == 0:
|
||||||
|
self.initialize(input)
|
||||||
|
self.initialized.fill_(1)
|
||||||
|
|
||||||
|
h = self.scale * (input + self.loc)
|
||||||
|
|
||||||
|
if squeeze:
|
||||||
|
h = h.squeeze(-1).squeeze(-1)
|
||||||
|
|
||||||
|
if self.logdet:
|
||||||
|
log_abs = torch.log(torch.abs(self.scale))
|
||||||
|
logdet = height*width*torch.sum(log_abs)
|
||||||
|
logdet = logdet * torch.ones(input.shape[0]).to(input)
|
||||||
|
return h, logdet
|
||||||
|
|
||||||
|
return h
|
||||||
|
|
||||||
|
def reverse(self, output):
|
||||||
|
if self.training and self.initialized.item() == 0:
|
||||||
|
if not self.allow_reverse_init:
|
||||||
|
raise RuntimeError(
|
||||||
|
"Initializing ActNorm in reverse direction is "
|
||||||
|
"disabled by default. Use allow_reverse_init=True to enable."
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.initialize(output)
|
||||||
|
self.initialized.fill_(1)
|
||||||
|
|
||||||
|
if len(output.shape) == 2:
|
||||||
|
output = output[:,:,None,None]
|
||||||
|
squeeze = True
|
||||||
|
else:
|
||||||
|
squeeze = False
|
||||||
|
|
||||||
|
h = output / self.scale - self.loc
|
||||||
|
|
||||||
|
if squeeze:
|
||||||
|
h = h.squeeze(-1).squeeze(-1)
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
class AbstractEncoder(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def encode(self, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
|
class Labelator(AbstractEncoder):
|
||||||
|
"""Net2Net Interface for Class-Conditional Model"""
|
||||||
|
def __init__(self, n_classes, quantize_interface=True):
|
||||||
|
super().__init__()
|
||||||
|
self.n_classes = n_classes
|
||||||
|
self.quantize_interface = quantize_interface
|
||||||
|
|
||||||
|
def encode(self, c):
|
||||||
|
c = c[:,None]
|
||||||
|
if self.quantize_interface:
|
||||||
|
return c, None, [None, None, c.long()]
|
||||||
|
return c
|
||||||
|
|
||||||
|
|
||||||
|
class SOSProvider(AbstractEncoder):
|
||||||
|
# for unconditional training
|
||||||
|
def __init__(self, sos_token, quantize_interface=True):
|
||||||
|
super().__init__()
|
||||||
|
self.sos_token = sos_token
|
||||||
|
self.quantize_interface = quantize_interface
|
||||||
|
|
||||||
|
def encode(self, x):
|
||||||
|
# get batch size from data and replicate sos_token
|
||||||
|
c = torch.ones(x.shape[0], 1)*self.sos_token
|
||||||
|
c = c.long().to(x.device)
|
||||||
|
if self.quantize_interface:
|
||||||
|
return c, None, [None, None, c]
|
||||||
|
return c
|
||||||
445
OCR_earsing/latent_diffusion/taming/modules/vqvae/quantize.py
Normal file
445
OCR_earsing/latent_diffusion/taming/modules/vqvae/quantize.py
Normal file
@@ -0,0 +1,445 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import numpy as np
|
||||||
|
from torch import einsum
|
||||||
|
from einops import rearrange
|
||||||
|
|
||||||
|
|
||||||
|
class VectorQuantizer(nn.Module):
|
||||||
|
"""
|
||||||
|
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
|
||||||
|
____________________________________________
|
||||||
|
Discretization bottleneck part of the VQ-VAE.
|
||||||
|
Inputs:
|
||||||
|
- n_e : number of embeddings
|
||||||
|
- e_dim : dimension of embedding
|
||||||
|
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
|
||||||
|
_____________________________________________
|
||||||
|
"""
|
||||||
|
|
||||||
|
# NOTE: this class contains a bug regarding beta; see VectorQuantizer2 for
|
||||||
|
# a fix and use legacy=False to apply that fix. VectorQuantizer2 can be
|
||||||
|
# used wherever VectorQuantizer has been used before and is additionally
|
||||||
|
# more efficient.
|
||||||
|
def __init__(self, n_e, e_dim, beta):
|
||||||
|
super(VectorQuantizer, self).__init__()
|
||||||
|
self.n_e = n_e
|
||||||
|
self.e_dim = e_dim
|
||||||
|
self.beta = beta
|
||||||
|
|
||||||
|
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
||||||
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
||||||
|
|
||||||
|
def forward(self, z):
|
||||||
|
"""
|
||||||
|
Inputs the output of the encoder network z and maps it to a discrete
|
||||||
|
one-hot vector that is the index of the closest embedding vector e_j
|
||||||
|
z (continuous) -> z_q (discrete)
|
||||||
|
z.shape = (batch, channel, height, width)
|
||||||
|
quantization pipeline:
|
||||||
|
1. get encoder input (B,C,H,W)
|
||||||
|
2. flatten input to (B*H*W,C)
|
||||||
|
"""
|
||||||
|
# reshape z -> (batch, height, width, channel) and flatten
|
||||||
|
z = z.permute(0, 2, 3, 1).contiguous()
|
||||||
|
z_flattened = z.view(-1, self.e_dim)
|
||||||
|
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
||||||
|
|
||||||
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
||||||
|
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
|
||||||
|
torch.matmul(z_flattened, self.embedding.weight.t())
|
||||||
|
|
||||||
|
## could possible replace this here
|
||||||
|
# #\start...
|
||||||
|
# find closest encodings
|
||||||
|
min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
|
||||||
|
|
||||||
|
min_encodings = torch.zeros(
|
||||||
|
min_encoding_indices.shape[0], self.n_e).to(z)
|
||||||
|
min_encodings.scatter_(1, min_encoding_indices, 1)
|
||||||
|
|
||||||
|
# dtype min encodings: torch.float32
|
||||||
|
# min_encodings shape: torch.Size([2048, 512])
|
||||||
|
# min_encoding_indices.shape: torch.Size([2048, 1])
|
||||||
|
|
||||||
|
# get quantized latent vectors
|
||||||
|
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
|
||||||
|
#.........\end
|
||||||
|
|
||||||
|
# with:
|
||||||
|
# .........\start
|
||||||
|
#min_encoding_indices = torch.argmin(d, dim=1)
|
||||||
|
#z_q = self.embedding(min_encoding_indices)
|
||||||
|
# ......\end......... (TODO)
|
||||||
|
|
||||||
|
# compute loss for embedding
|
||||||
|
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \
|
||||||
|
torch.mean((z_q - z.detach()) ** 2)
|
||||||
|
|
||||||
|
# preserve gradients
|
||||||
|
z_q = z + (z_q - z).detach()
|
||||||
|
|
||||||
|
# perplexity
|
||||||
|
e_mean = torch.mean(min_encodings, dim=0)
|
||||||
|
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
|
||||||
|
|
||||||
|
# reshape back to match original input shape
|
||||||
|
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
||||||
|
|
||||||
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
||||||
|
|
||||||
|
def get_codebook_entry(self, indices, shape):
|
||||||
|
# shape specifying (batch, height, width, channel)
|
||||||
|
# TODO: check for more easy handling with nn.Embedding
|
||||||
|
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices)
|
||||||
|
min_encodings.scatter_(1, indices[:,None], 1)
|
||||||
|
|
||||||
|
# get quantized latent vectors
|
||||||
|
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
|
||||||
|
|
||||||
|
if shape is not None:
|
||||||
|
z_q = z_q.view(shape)
|
||||||
|
|
||||||
|
# reshape back to match original input shape
|
||||||
|
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
||||||
|
|
||||||
|
return z_q
|
||||||
|
|
||||||
|
|
||||||
|
class GumbelQuantize(nn.Module):
|
||||||
|
"""
|
||||||
|
credit to @karpathy: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py (thanks!)
|
||||||
|
Gumbel Softmax trick quantizer
|
||||||
|
Categorical Reparameterization with Gumbel-Softmax, Jang et al. 2016
|
||||||
|
https://arxiv.org/abs/1611.01144
|
||||||
|
"""
|
||||||
|
def __init__(self, num_hiddens, embedding_dim, n_embed, straight_through=True,
|
||||||
|
kl_weight=5e-4, temp_init=1.0, use_vqinterface=True,
|
||||||
|
remap=None, unknown_index="random"):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.embedding_dim = embedding_dim
|
||||||
|
self.n_embed = n_embed
|
||||||
|
|
||||||
|
self.straight_through = straight_through
|
||||||
|
self.temperature = temp_init
|
||||||
|
self.kl_weight = kl_weight
|
||||||
|
|
||||||
|
self.proj = nn.Conv2d(num_hiddens, n_embed, 1)
|
||||||
|
self.embed = nn.Embedding(n_embed, embedding_dim)
|
||||||
|
|
||||||
|
self.use_vqinterface = use_vqinterface
|
||||||
|
|
||||||
|
self.remap = remap
|
||||||
|
if self.remap is not None:
|
||||||
|
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
||||||
|
self.re_embed = self.used.shape[0]
|
||||||
|
self.unknown_index = unknown_index # "random" or "extra" or integer
|
||||||
|
if self.unknown_index == "extra":
|
||||||
|
self.unknown_index = self.re_embed
|
||||||
|
self.re_embed = self.re_embed+1
|
||||||
|
print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. "
|
||||||
|
f"Using {self.unknown_index} for unknown indices.")
|
||||||
|
else:
|
||||||
|
self.re_embed = n_embed
|
||||||
|
|
||||||
|
def remap_to_used(self, inds):
|
||||||
|
ishape = inds.shape
|
||||||
|
assert len(ishape)>1
|
||||||
|
inds = inds.reshape(ishape[0],-1)
|
||||||
|
used = self.used.to(inds)
|
||||||
|
match = (inds[:,:,None]==used[None,None,...]).long()
|
||||||
|
new = match.argmax(-1)
|
||||||
|
unknown = match.sum(2)<1
|
||||||
|
if self.unknown_index == "random":
|
||||||
|
new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
|
||||||
|
else:
|
||||||
|
new[unknown] = self.unknown_index
|
||||||
|
return new.reshape(ishape)
|
||||||
|
|
||||||
|
def unmap_to_all(self, inds):
|
||||||
|
ishape = inds.shape
|
||||||
|
assert len(ishape)>1
|
||||||
|
inds = inds.reshape(ishape[0],-1)
|
||||||
|
used = self.used.to(inds)
|
||||||
|
if self.re_embed > self.used.shape[0]: # extra token
|
||||||
|
inds[inds>=self.used.shape[0]] = 0 # simply set to zero
|
||||||
|
back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
|
||||||
|
return back.reshape(ishape)
|
||||||
|
|
||||||
|
def forward(self, z, temp=None, return_logits=False):
|
||||||
|
# force hard = True when we are in eval mode, as we must quantize. actually, always true seems to work
|
||||||
|
hard = self.straight_through if self.training else True
|
||||||
|
temp = self.temperature if temp is None else temp
|
||||||
|
|
||||||
|
logits = self.proj(z)
|
||||||
|
if self.remap is not None:
|
||||||
|
# continue only with used logits
|
||||||
|
full_zeros = torch.zeros_like(logits)
|
||||||
|
logits = logits[:,self.used,...]
|
||||||
|
|
||||||
|
soft_one_hot = F.gumbel_softmax(logits, tau=temp, dim=1, hard=hard)
|
||||||
|
if self.remap is not None:
|
||||||
|
# go back to all entries but unused set to zero
|
||||||
|
full_zeros[:,self.used,...] = soft_one_hot
|
||||||
|
soft_one_hot = full_zeros
|
||||||
|
z_q = einsum('b n h w, n d -> b d h w', soft_one_hot, self.embed.weight)
|
||||||
|
|
||||||
|
# + kl divergence to the prior loss
|
||||||
|
qy = F.softmax(logits, dim=1)
|
||||||
|
diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.n_embed + 1e-10), dim=1).mean()
|
||||||
|
|
||||||
|
ind = soft_one_hot.argmax(dim=1)
|
||||||
|
if self.remap is not None:
|
||||||
|
ind = self.remap_to_used(ind)
|
||||||
|
if self.use_vqinterface:
|
||||||
|
if return_logits:
|
||||||
|
return z_q, diff, (None, None, ind), logits
|
||||||
|
return z_q, diff, (None, None, ind)
|
||||||
|
return z_q, diff, ind
|
||||||
|
|
||||||
|
def get_codebook_entry(self, indices, shape):
|
||||||
|
b, h, w, c = shape
|
||||||
|
assert b*h*w == indices.shape[0]
|
||||||
|
indices = rearrange(indices, '(b h w) -> b h w', b=b, h=h, w=w)
|
||||||
|
if self.remap is not None:
|
||||||
|
indices = self.unmap_to_all(indices)
|
||||||
|
one_hot = F.one_hot(indices, num_classes=self.n_embed).permute(0, 3, 1, 2).float()
|
||||||
|
z_q = einsum('b n h w, n d -> b d h w', one_hot, self.embed.weight)
|
||||||
|
return z_q
|
||||||
|
|
||||||
|
|
||||||
|
class VectorQuantizer2(nn.Module):
|
||||||
|
"""
|
||||||
|
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
|
||||||
|
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
|
||||||
|
"""
|
||||||
|
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
||||||
|
# backwards compatibility we use the buggy version by default, but you can
|
||||||
|
# specify legacy=False to fix it.
|
||||||
|
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random",
|
||||||
|
sane_index_shape=False, legacy=True):
|
||||||
|
super().__init__()
|
||||||
|
self.n_e = n_e
|
||||||
|
self.e_dim = e_dim
|
||||||
|
self.beta = beta
|
||||||
|
self.legacy = legacy
|
||||||
|
|
||||||
|
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
||||||
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
||||||
|
|
||||||
|
self.remap = remap
|
||||||
|
if self.remap is not None:
|
||||||
|
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
||||||
|
self.re_embed = self.used.shape[0]
|
||||||
|
self.unknown_index = unknown_index # "random" or "extra" or integer
|
||||||
|
if self.unknown_index == "extra":
|
||||||
|
self.unknown_index = self.re_embed
|
||||||
|
self.re_embed = self.re_embed+1
|
||||||
|
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
||||||
|
f"Using {self.unknown_index} for unknown indices.")
|
||||||
|
else:
|
||||||
|
self.re_embed = n_e
|
||||||
|
|
||||||
|
self.sane_index_shape = sane_index_shape
|
||||||
|
|
||||||
|
def remap_to_used(self, inds):
|
||||||
|
ishape = inds.shape
|
||||||
|
assert len(ishape)>1
|
||||||
|
inds = inds.reshape(ishape[0],-1)
|
||||||
|
used = self.used.to(inds)
|
||||||
|
match = (inds[:,:,None]==used[None,None,...]).long()
|
||||||
|
new = match.argmax(-1)
|
||||||
|
unknown = match.sum(2)<1
|
||||||
|
if self.unknown_index == "random":
|
||||||
|
new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
|
||||||
|
else:
|
||||||
|
new[unknown] = self.unknown_index
|
||||||
|
return new.reshape(ishape)
|
||||||
|
|
||||||
|
def unmap_to_all(self, inds):
|
||||||
|
ishape = inds.shape
|
||||||
|
assert len(ishape)>1
|
||||||
|
inds = inds.reshape(ishape[0],-1)
|
||||||
|
used = self.used.to(inds)
|
||||||
|
if self.re_embed > self.used.shape[0]: # extra token
|
||||||
|
inds[inds>=self.used.shape[0]] = 0 # simply set to zero
|
||||||
|
back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
|
||||||
|
return back.reshape(ishape)
|
||||||
|
|
||||||
|
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
|
||||||
|
assert temp is None or temp==1.0, "Only for interface compatible with Gumbel"
|
||||||
|
assert rescale_logits==False, "Only for interface compatible with Gumbel"
|
||||||
|
assert return_logits==False, "Only for interface compatible with Gumbel"
|
||||||
|
# reshape z -> (batch, height, width, channel) and flatten
|
||||||
|
z = rearrange(z, 'b c h w -> b h w c').contiguous()
|
||||||
|
z_flattened = z.view(-1, self.e_dim)
|
||||||
|
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
||||||
|
|
||||||
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
||||||
|
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
|
||||||
|
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))
|
||||||
|
|
||||||
|
min_encoding_indices = torch.argmin(d, dim=1)
|
||||||
|
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
||||||
|
perplexity = None
|
||||||
|
min_encodings = None
|
||||||
|
|
||||||
|
# compute loss for embedding
|
||||||
|
if not self.legacy:
|
||||||
|
loss = self.beta * torch.mean((z_q.detach()-z)**2) + \
|
||||||
|
torch.mean((z_q - z.detach()) ** 2)
|
||||||
|
else:
|
||||||
|
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \
|
||||||
|
torch.mean((z_q - z.detach()) ** 2)
|
||||||
|
|
||||||
|
# preserve gradients
|
||||||
|
z_q = z + (z_q - z).detach()
|
||||||
|
|
||||||
|
# reshape back to match original input shape
|
||||||
|
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
|
||||||
|
|
||||||
|
if self.remap is not None:
|
||||||
|
min_encoding_indices = min_encoding_indices.reshape(z.shape[0],-1) # add batch axis
|
||||||
|
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
||||||
|
min_encoding_indices = min_encoding_indices.reshape(-1,1) # flatten
|
||||||
|
|
||||||
|
if self.sane_index_shape:
|
||||||
|
min_encoding_indices = min_encoding_indices.reshape(
|
||||||
|
z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
||||||
|
|
||||||
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
||||||
|
|
||||||
|
def get_codebook_entry(self, indices, shape):
|
||||||
|
# shape specifying (batch, height, width, channel)
|
||||||
|
if self.remap is not None:
|
||||||
|
indices = indices.reshape(shape[0],-1) # add batch axis
|
||||||
|
indices = self.unmap_to_all(indices)
|
||||||
|
indices = indices.reshape(-1) # flatten again
|
||||||
|
|
||||||
|
# get quantized latent vectors
|
||||||
|
z_q = self.embedding(indices)
|
||||||
|
|
||||||
|
if shape is not None:
|
||||||
|
z_q = z_q.view(shape)
|
||||||
|
# reshape back to match original input shape
|
||||||
|
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
||||||
|
|
||||||
|
return z_q
|
||||||
|
|
||||||
|
class EmbeddingEMA(nn.Module):
|
||||||
|
def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5):
|
||||||
|
super().__init__()
|
||||||
|
self.decay = decay
|
||||||
|
self.eps = eps
|
||||||
|
weight = torch.randn(num_tokens, codebook_dim)
|
||||||
|
self.weight = nn.Parameter(weight, requires_grad = False)
|
||||||
|
self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad = False)
|
||||||
|
self.embed_avg = nn.Parameter(weight.clone(), requires_grad = False)
|
||||||
|
self.update = True
|
||||||
|
|
||||||
|
def forward(self, embed_id):
|
||||||
|
return F.embedding(embed_id, self.weight)
|
||||||
|
|
||||||
|
def cluster_size_ema_update(self, new_cluster_size):
|
||||||
|
self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay)
|
||||||
|
|
||||||
|
def embed_avg_ema_update(self, new_embed_avg):
|
||||||
|
self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay)
|
||||||
|
|
||||||
|
def weight_update(self, num_tokens):
|
||||||
|
n = self.cluster_size.sum()
|
||||||
|
smoothed_cluster_size = (
|
||||||
|
(self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n
|
||||||
|
)
|
||||||
|
#normalize embedding average with smoothed cluster size
|
||||||
|
embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1)
|
||||||
|
self.weight.data.copy_(embed_normalized)
|
||||||
|
|
||||||
|
|
||||||
|
class EMAVectorQuantizer(nn.Module):
|
||||||
|
def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5,
|
||||||
|
remap=None, unknown_index="random"):
|
||||||
|
super().__init__()
|
||||||
|
self.codebook_dim = codebook_dim
|
||||||
|
self.num_tokens = num_tokens
|
||||||
|
self.beta = beta
|
||||||
|
self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps)
|
||||||
|
|
||||||
|
self.remap = remap
|
||||||
|
if self.remap is not None:
|
||||||
|
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
||||||
|
self.re_embed = self.used.shape[0]
|
||||||
|
self.unknown_index = unknown_index # "random" or "extra" or integer
|
||||||
|
if self.unknown_index == "extra":
|
||||||
|
self.unknown_index = self.re_embed
|
||||||
|
self.re_embed = self.re_embed+1
|
||||||
|
print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. "
|
||||||
|
f"Using {self.unknown_index} for unknown indices.")
|
||||||
|
else:
|
||||||
|
self.re_embed = n_embed
|
||||||
|
|
||||||
|
def remap_to_used(self, inds):
|
||||||
|
ishape = inds.shape
|
||||||
|
assert len(ishape)>1
|
||||||
|
inds = inds.reshape(ishape[0],-1)
|
||||||
|
used = self.used.to(inds)
|
||||||
|
match = (inds[:,:,None]==used[None,None,...]).long()
|
||||||
|
new = match.argmax(-1)
|
||||||
|
unknown = match.sum(2)<1
|
||||||
|
if self.unknown_index == "random":
|
||||||
|
new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
|
||||||
|
else:
|
||||||
|
new[unknown] = self.unknown_index
|
||||||
|
return new.reshape(ishape)
|
||||||
|
|
||||||
|
def unmap_to_all(self, inds):
|
||||||
|
ishape = inds.shape
|
||||||
|
assert len(ishape)>1
|
||||||
|
inds = inds.reshape(ishape[0],-1)
|
||||||
|
used = self.used.to(inds)
|
||||||
|
if self.re_embed > self.used.shape[0]: # extra token
|
||||||
|
inds[inds>=self.used.shape[0]] = 0 # simply set to zero
|
||||||
|
back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
|
||||||
|
return back.reshape(ishape)
|
||||||
|
|
||||||
|
def forward(self, z):
|
||||||
|
# reshape z -> (batch, height, width, channel) and flatten
|
||||||
|
#z, 'b c h w -> b h w c'
|
||||||
|
z = rearrange(z, 'b c h w -> b h w c')
|
||||||
|
z_flattened = z.reshape(-1, self.codebook_dim)
|
||||||
|
|
||||||
|
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
||||||
|
d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \
|
||||||
|
self.embedding.weight.pow(2).sum(dim=1) - 2 * \
|
||||||
|
torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) # 'n d -> d n'
|
||||||
|
|
||||||
|
|
||||||
|
encoding_indices = torch.argmin(d, dim=1)
|
||||||
|
|
||||||
|
z_q = self.embedding(encoding_indices).view(z.shape)
|
||||||
|
encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype)
|
||||||
|
avg_probs = torch.mean(encodings, dim=0)
|
||||||
|
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
|
||||||
|
|
||||||
|
if self.training and self.embedding.update:
|
||||||
|
#EMA cluster size
|
||||||
|
encodings_sum = encodings.sum(0)
|
||||||
|
self.embedding.cluster_size_ema_update(encodings_sum)
|
||||||
|
#EMA embedding average
|
||||||
|
embed_sum = encodings.transpose(0,1) @ z_flattened
|
||||||
|
self.embedding.embed_avg_ema_update(embed_sum)
|
||||||
|
#normalize embed_avg and update weight
|
||||||
|
self.embedding.weight_update(self.num_tokens)
|
||||||
|
|
||||||
|
# compute loss for embedding
|
||||||
|
loss = self.beta * F.mse_loss(z_q.detach(), z)
|
||||||
|
|
||||||
|
# preserve gradients
|
||||||
|
z_q = z + (z_q - z).detach()
|
||||||
|
|
||||||
|
# reshape back to match original input shape
|
||||||
|
#z_q, 'b h w c -> b c h w'
|
||||||
|
z_q = rearrange(z_q, 'b h w c -> b c h w')
|
||||||
|
return z_q, loss, (perplexity, encodings, encoding_indices)
|
||||||
157
OCR_earsing/latent_diffusion/taming/util.py
Normal file
157
OCR_earsing/latent_diffusion/taming/util.py
Normal file
@@ -0,0 +1,157 @@
|
|||||||
|
import os, hashlib
|
||||||
|
import requests
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
URL_MAP = {
|
||||||
|
"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1"
|
||||||
|
}
|
||||||
|
|
||||||
|
CKPT_MAP = {
|
||||||
|
"vgg_lpips": "vgg.pth"
|
||||||
|
}
|
||||||
|
|
||||||
|
MD5_MAP = {
|
||||||
|
"vgg_lpips": "d507d7349b931f0638a25a48a722f98a"
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def download(url, local_path, chunk_size=1024):
|
||||||
|
os.makedirs(os.path.split(local_path)[0], exist_ok=True)
|
||||||
|
with requests.get(url, stream=True) as r:
|
||||||
|
total_size = int(r.headers.get("content-length", 0))
|
||||||
|
with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
|
||||||
|
with open(local_path, "wb") as f:
|
||||||
|
for data in r.iter_content(chunk_size=chunk_size):
|
||||||
|
if data:
|
||||||
|
f.write(data)
|
||||||
|
pbar.update(chunk_size)
|
||||||
|
|
||||||
|
|
||||||
|
def md5_hash(path):
|
||||||
|
with open(path, "rb") as f:
|
||||||
|
content = f.read()
|
||||||
|
return hashlib.md5(content).hexdigest()
|
||||||
|
|
||||||
|
|
||||||
|
def get_ckpt_path(name, root, check=False):
|
||||||
|
assert name in URL_MAP
|
||||||
|
path = os.path.join(root, CKPT_MAP[name])
|
||||||
|
if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]):
|
||||||
|
print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path))
|
||||||
|
download(URL_MAP[name], path)
|
||||||
|
md5 = md5_hash(path)
|
||||||
|
assert md5 == MD5_MAP[name], md5
|
||||||
|
return path
|
||||||
|
|
||||||
|
|
||||||
|
class KeyNotFoundError(Exception):
|
||||||
|
def __init__(self, cause, keys=None, visited=None):
|
||||||
|
self.cause = cause
|
||||||
|
self.keys = keys
|
||||||
|
self.visited = visited
|
||||||
|
messages = list()
|
||||||
|
if keys is not None:
|
||||||
|
messages.append("Key not found: {}".format(keys))
|
||||||
|
if visited is not None:
|
||||||
|
messages.append("Visited: {}".format(visited))
|
||||||
|
messages.append("Cause:\n{}".format(cause))
|
||||||
|
message = "\n".join(messages)
|
||||||
|
super().__init__(message)
|
||||||
|
|
||||||
|
|
||||||
|
def retrieve(
|
||||||
|
list_or_dict, key, splitval="/", default=None, expand=True, pass_success=False
|
||||||
|
):
|
||||||
|
"""Given a nested list or dict return the desired value at key expanding
|
||||||
|
callable nodes if necessary and :attr:`expand` is ``True``. The expansion
|
||||||
|
is done in-place.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
list_or_dict : list or dict
|
||||||
|
Possibly nested list or dictionary.
|
||||||
|
key : str
|
||||||
|
key/to/value, path like string describing all keys necessary to
|
||||||
|
consider to get to the desired value. List indices can also be
|
||||||
|
passed here.
|
||||||
|
splitval : str
|
||||||
|
String that defines the delimiter between keys of the
|
||||||
|
different depth levels in `key`.
|
||||||
|
default : obj
|
||||||
|
Value returned if :attr:`key` is not found.
|
||||||
|
expand : bool
|
||||||
|
Whether to expand callable nodes on the path or not.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
The desired value or if :attr:`default` is not ``None`` and the
|
||||||
|
:attr:`key` is not found returns ``default``.
|
||||||
|
|
||||||
|
Raises
|
||||||
|
------
|
||||||
|
Exception if ``key`` not in ``list_or_dict`` and :attr:`default` is
|
||||||
|
``None``.
|
||||||
|
"""
|
||||||
|
|
||||||
|
keys = key.split(splitval)
|
||||||
|
|
||||||
|
success = True
|
||||||
|
try:
|
||||||
|
visited = []
|
||||||
|
parent = None
|
||||||
|
last_key = None
|
||||||
|
for key in keys:
|
||||||
|
if callable(list_or_dict):
|
||||||
|
if not expand:
|
||||||
|
raise KeyNotFoundError(
|
||||||
|
ValueError(
|
||||||
|
"Trying to get past callable node with expand=False."
|
||||||
|
),
|
||||||
|
keys=keys,
|
||||||
|
visited=visited,
|
||||||
|
)
|
||||||
|
list_or_dict = list_or_dict()
|
||||||
|
parent[last_key] = list_or_dict
|
||||||
|
|
||||||
|
last_key = key
|
||||||
|
parent = list_or_dict
|
||||||
|
|
||||||
|
try:
|
||||||
|
if isinstance(list_or_dict, dict):
|
||||||
|
list_or_dict = list_or_dict[key]
|
||||||
|
else:
|
||||||
|
list_or_dict = list_or_dict[int(key)]
|
||||||
|
except (KeyError, IndexError, ValueError) as e:
|
||||||
|
raise KeyNotFoundError(e, keys=keys, visited=visited)
|
||||||
|
|
||||||
|
visited += [key]
|
||||||
|
# final expansion of retrieved value
|
||||||
|
if expand and callable(list_or_dict):
|
||||||
|
list_or_dict = list_or_dict()
|
||||||
|
parent[last_key] = list_or_dict
|
||||||
|
except KeyNotFoundError as e:
|
||||||
|
if default is None:
|
||||||
|
raise e
|
||||||
|
else:
|
||||||
|
list_or_dict = default
|
||||||
|
success = False
|
||||||
|
|
||||||
|
if not pass_success:
|
||||||
|
return list_or_dict
|
||||||
|
else:
|
||||||
|
return list_or_dict, success
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
config = {"keya": "a",
|
||||||
|
"keyb": "b",
|
||||||
|
"keyc":
|
||||||
|
{"cc1": 1,
|
||||||
|
"cc2": 2,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
from omegaconf import OmegaConf
|
||||||
|
config = OmegaConf.create(config)
|
||||||
|
print(config)
|
||||||
|
retrieve(config, "keya")
|
||||||
|
|
||||||
BIN
OCR_earsing/model_checkpoint/det_latin_words/1/model.onnx
Normal file
BIN
OCR_earsing/model_checkpoint/det_latin_words/1/model.onnx
Normal file
Binary file not shown.
185
OCR_earsing/model_checkpoint/latin_dict.txt
Normal file
185
OCR_earsing/model_checkpoint/latin_dict.txt
Normal file
@@ -0,0 +1,185 @@
|
|||||||
|
|
||||||
|
!
|
||||||
|
"
|
||||||
|
#
|
||||||
|
$
|
||||||
|
%
|
||||||
|
&
|
||||||
|
'
|
||||||
|
(
|
||||||
|
)
|
||||||
|
*
|
||||||
|
+
|
||||||
|
,
|
||||||
|
-
|
||||||
|
.
|
||||||
|
/
|
||||||
|
0
|
||||||
|
1
|
||||||
|
2
|
||||||
|
3
|
||||||
|
4
|
||||||
|
5
|
||||||
|
6
|
||||||
|
7
|
||||||
|
8
|
||||||
|
9
|
||||||
|
:
|
||||||
|
;
|
||||||
|
<
|
||||||
|
=
|
||||||
|
>
|
||||||
|
?
|
||||||
|
@
|
||||||
|
A
|
||||||
|
B
|
||||||
|
C
|
||||||
|
D
|
||||||
|
E
|
||||||
|
F
|
||||||
|
G
|
||||||
|
H
|
||||||
|
I
|
||||||
|
J
|
||||||
|
K
|
||||||
|
L
|
||||||
|
M
|
||||||
|
N
|
||||||
|
O
|
||||||
|
P
|
||||||
|
Q
|
||||||
|
R
|
||||||
|
S
|
||||||
|
T
|
||||||
|
U
|
||||||
|
V
|
||||||
|
W
|
||||||
|
X
|
||||||
|
Y
|
||||||
|
Z
|
||||||
|
[
|
||||||
|
]
|
||||||
|
_
|
||||||
|
`
|
||||||
|
a
|
||||||
|
b
|
||||||
|
c
|
||||||
|
d
|
||||||
|
e
|
||||||
|
f
|
||||||
|
g
|
||||||
|
h
|
||||||
|
i
|
||||||
|
j
|
||||||
|
k
|
||||||
|
l
|
||||||
|
m
|
||||||
|
n
|
||||||
|
o
|
||||||
|
p
|
||||||
|
q
|
||||||
|
r
|
||||||
|
s
|
||||||
|
t
|
||||||
|
u
|
||||||
|
v
|
||||||
|
w
|
||||||
|
x
|
||||||
|
y
|
||||||
|
z
|
||||||
|
{
|
||||||
|
}
|
||||||
|
¡
|
||||||
|
£
|
||||||
|
§
|
||||||
|
ª
|
||||||
|
«
|
||||||
|
|
||||||
|
°
|
||||||
|
²
|
||||||
|
³
|
||||||
|
´
|
||||||
|
µ
|
||||||
|
·
|
||||||
|
º
|
||||||
|
»
|
||||||
|
¿
|
||||||
|
À
|
||||||
|
Á
|
||||||
|
Â
|
||||||
|
Ä
|
||||||
|
Å
|
||||||
|
Ç
|
||||||
|
È
|
||||||
|
É
|
||||||
|
Ê
|
||||||
|
Ë
|
||||||
|
Ì
|
||||||
|
Í
|
||||||
|
Î
|
||||||
|
Ï
|
||||||
|
Ò
|
||||||
|
Ó
|
||||||
|
Ô
|
||||||
|
Õ
|
||||||
|
Ö
|
||||||
|
Ú
|
||||||
|
Ü
|
||||||
|
Ý
|
||||||
|
ß
|
||||||
|
à
|
||||||
|
á
|
||||||
|
â
|
||||||
|
ã
|
||||||
|
ä
|
||||||
|
å
|
||||||
|
æ
|
||||||
|
ç
|
||||||
|
è
|
||||||
|
é
|
||||||
|
ê
|
||||||
|
ë
|
||||||
|
ì
|
||||||
|
í
|
||||||
|
î
|
||||||
|
ï
|
||||||
|
ñ
|
||||||
|
ò
|
||||||
|
ó
|
||||||
|
ô
|
||||||
|
õ
|
||||||
|
ö
|
||||||
|
ø
|
||||||
|
ù
|
||||||
|
ú
|
||||||
|
û
|
||||||
|
ü
|
||||||
|
ý
|
||||||
|
ą
|
||||||
|
Ć
|
||||||
|
ć
|
||||||
|
Č
|
||||||
|
č
|
||||||
|
Đ
|
||||||
|
đ
|
||||||
|
ę
|
||||||
|
ı
|
||||||
|
Ł
|
||||||
|
ł
|
||||||
|
ō
|
||||||
|
Œ
|
||||||
|
œ
|
||||||
|
Š
|
||||||
|
š
|
||||||
|
Ÿ
|
||||||
|
Ž
|
||||||
|
ž
|
||||||
|
ʒ
|
||||||
|
β
|
||||||
|
δ
|
||||||
|
ε
|
||||||
|
з
|
||||||
|
Ṡ
|
||||||
|
‘
|
||||||
|
€
|
||||||
|
™
|
||||||
BIN
OCR_earsing/model_checkpoint/rec_general_words_fr/1/model.onnx
Normal file
BIN
OCR_earsing/model_checkpoint/rec_general_words_fr/1/model.onnx
Normal file
Binary file not shown.
125
OCR_earsing/ocr_eraser.py
Normal file
125
OCR_earsing/ocr_eraser.py
Normal file
@@ -0,0 +1,125 @@
|
|||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import torch
|
||||||
|
|
||||||
|
# Download checkpoints
|
||||||
|
os.system("pip install git+https://github.com/facebookresearch/segment-anything.git")
|
||||||
|
os.system('wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth')
|
||||||
|
os.system('wget -O last.ckpt https://heibox.uni-heidelberg.de/f/4d9ac7ea40c64582b7c9/?dl=1')
|
||||||
|
|
||||||
|
from PIL import Image
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
# OCR
|
||||||
|
from utils.ocr_utils import ocr_extraction
|
||||||
|
from utils.easy_ocr_utils import easy_ocr_extraction
|
||||||
|
|
||||||
|
# SAM
|
||||||
|
from segment_anything import SamPredictor, sam_model_registry
|
||||||
|
|
||||||
|
# Diffusion model
|
||||||
|
sys.path.append('latent_diffusion')
|
||||||
|
from latent_diffusion.ldm_erase_text import erase_text_from_image, instantiate_from_config, OmegaConf
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def multi_mask2one_mask(masks):
|
||||||
|
_, _, h, w = masks.shape
|
||||||
|
for i, mask in enumerate(masks):
|
||||||
|
mask_image = mask.reshape(h, w, 1)
|
||||||
|
whole_mask = mask_image if i == 0 else whole_mask + mask_image
|
||||||
|
whole_mask = np.where(whole_mask == False, 0, 255)
|
||||||
|
return whole_mask
|
||||||
|
|
||||||
|
|
||||||
|
def numpy2PIL(numpy_image):
|
||||||
|
out = Image.fromarray(numpy_image.astype(np.uint8))
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def show_mask(mask, ax, random_color=False):
|
||||||
|
if random_color:
|
||||||
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
||||||
|
else:
|
||||||
|
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
|
||||||
|
h, w = mask.shape[-2:]
|
||||||
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
||||||
|
ax.imshow(mask_image)
|
||||||
|
|
||||||
|
|
||||||
|
def run_earse(img_path, sam_type, sam_checkpoint, config_path, model_checkpoint, device="cpu", img_size=(512, 512),
|
||||||
|
steps=50, use_easy_ocr=False):
|
||||||
|
img = cv2.imread(img_path)
|
||||||
|
# h, w, c = img.shape
|
||||||
|
|
||||||
|
# SAM
|
||||||
|
sam = sam_model_registry[sam_type](checkpoint=sam_checkpoint)
|
||||||
|
sam = sam.to(device)
|
||||||
|
sam_predictor = SamPredictor(sam)
|
||||||
|
|
||||||
|
# Diffusion model
|
||||||
|
config = OmegaConf.load(config_path)
|
||||||
|
model = instantiate_from_config(config.model)
|
||||||
|
model.load_state_dict(
|
||||||
|
torch.load(model_checkpoint)["state_dict"],
|
||||||
|
strict=False
|
||||||
|
)
|
||||||
|
model = model.to(device)
|
||||||
|
|
||||||
|
if use_easy_ocr:
|
||||||
|
word_info = easy_ocr_extraction(img_path)
|
||||||
|
else:
|
||||||
|
word_info = ocr_extraction(img_path)
|
||||||
|
det_bboxes = [bbox[:4] for bbox in word_info]
|
||||||
|
# convert to torch tensor
|
||||||
|
det_bboxes = torch.tensor(det_bboxes)
|
||||||
|
transformed_boxes = sam_predictor.transform.apply_boxes_torch(
|
||||||
|
det_bboxes, img.shape[:2]
|
||||||
|
)
|
||||||
|
sam_predictor.set_image(img, image_format='BGR')
|
||||||
|
masks, _, _ = sam_predictor.predict_torch(
|
||||||
|
point_coords=None,
|
||||||
|
point_labels=None,
|
||||||
|
boxes=transformed_boxes,
|
||||||
|
multimask_output=False,
|
||||||
|
)
|
||||||
|
ori_mask = multi_mask2one_mask(masks=masks)
|
||||||
|
mask_img = ori_mask[:, :, 0].astype('uint8')
|
||||||
|
kernel = np.ones((5, 5), np.int8)
|
||||||
|
whole_mask = cv2.dilate(
|
||||||
|
mask_img, kernel, iterations=2
|
||||||
|
)
|
||||||
|
|
||||||
|
mask_pil_image = numpy2PIL(numpy_image=whole_mask)
|
||||||
|
result_img = erase_text_from_image(
|
||||||
|
img_path=img_path,
|
||||||
|
mask_pil_img=mask_pil_image,
|
||||||
|
model=model,
|
||||||
|
device=device,
|
||||||
|
opt=None,
|
||||||
|
img_size=img_size,
|
||||||
|
steps=steps
|
||||||
|
)
|
||||||
|
|
||||||
|
result_img = cv2.cvtColor(np.array(result_img), cv2.COLOR_RGB2BGR)
|
||||||
|
cv2.namedWindow("Result Image", cv2.WINDOW_NORMAL)
|
||||||
|
cv2.imshow("Result Image", result_img)
|
||||||
|
cv2.waitKey(0) # Wait until a key is pressed
|
||||||
|
cv2.destroyAllWindows() # Close the image window
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
run_earse(
|
||||||
|
img_path="Facture médecine douce-27746732_0.jpg",
|
||||||
|
sam_type="vit_h",
|
||||||
|
sam_checkpoint="sam_vit_h_4b8939.pth",
|
||||||
|
config_path="latent_diffusion/inpainting_big/config.yaml",
|
||||||
|
model_checkpoint="last.ckpt",
|
||||||
|
device="cpu",
|
||||||
|
img_size=(512, 512),
|
||||||
|
steps=50,
|
||||||
|
use_easy_ocr=True
|
||||||
|
)
|
||||||
6
OCR_earsing/requirements.txt
Normal file
6
OCR_earsing/requirements.txt
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
numpy
|
||||||
|
omegaconf
|
||||||
|
einops
|
||||||
|
transformers
|
||||||
|
pytorch-lightning
|
||||||
|
diffusers
|
||||||
17
OCR_earsing/utils/easy_ocr_utils.py
Normal file
17
OCR_earsing/utils/easy_ocr_utils.py
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
import cv2
|
||||||
|
import easyocr
|
||||||
|
|
||||||
|
|
||||||
|
def easy_ocr_extraction(
|
||||||
|
img_path: str
|
||||||
|
) -> dict:
|
||||||
|
org_img_bgr = cv2.imread(img_path)
|
||||||
|
reader = easyocr.Reader(['fr', 'en'])
|
||||||
|
result = reader.readtext(org_img_bgr)
|
||||||
|
word_info = []
|
||||||
|
for (bbox, text, _) in result:
|
||||||
|
word_info.append(
|
||||||
|
[bbox[0][0], bbox[0][1], bbox[2][0], bbox[2][1], text]
|
||||||
|
)
|
||||||
|
|
||||||
|
return word_info
|
||||||
212
OCR_earsing/utils/ocr_utils.py
Normal file
212
OCR_earsing/utils/ocr_utils.py
Normal file
@@ -0,0 +1,212 @@
|
|||||||
|
from typing import List, Optional, Tuple, Union
|
||||||
|
import logging
|
||||||
|
import sys
|
||||||
|
import math
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
from PIL import Image
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
import numpy.typing as npt
|
||||||
|
from cv_base.postprocess.db_postprocess import DBPostProcess
|
||||||
|
from cv_base.postprocess.pp_rec_postprocess import CTCLabelDecode
|
||||||
|
from cv_base.preprocess.db_preprocess import DBPreprocess
|
||||||
|
from cv_base.utils.perspective import four_point_transform
|
||||||
|
from infer_client.adapters import InferenceAdapter
|
||||||
|
from infer_client.adapters.onnx import OnnxInferenceAdapter
|
||||||
|
from infer_client.inference import Inference
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
DET_MODEL = "model_checkpoint/det_latin_words"
|
||||||
|
REC_MODEL = "model_checkpoint/rec_general_words_fr"
|
||||||
|
VOCAB_DICT = "model_checkpoint/latin_dict.txt"
|
||||||
|
|
||||||
|
|
||||||
|
def get_vocab_str(vocab_dict_path: str):
|
||||||
|
with open(vocab_dict_path, "r") as rf:
|
||||||
|
vocab = rf.read()
|
||||||
|
return vocab.replace("\n", "")
|
||||||
|
|
||||||
|
|
||||||
|
def box4point_to_box2point(box4point):
|
||||||
|
# bounding box = [x0, y0, x1, y1, x2, y2, x3, y3]
|
||||||
|
all_x = [box4point[2 * i] for i in range(4)]
|
||||||
|
all_y = [box4point[2 * i + 1] for i in range(4)]
|
||||||
|
box2point = [min(all_x), min(all_y), max(all_x), max(all_y)]
|
||||||
|
return box2point
|
||||||
|
|
||||||
|
|
||||||
|
def minimum_bounding_rectangle(points):
|
||||||
|
from scipy.spatial import ConvexHull
|
||||||
|
|
||||||
|
hull = ConvexHull(points)
|
||||||
|
hull_points = points[hull.vertices]
|
||||||
|
|
||||||
|
# Find the minimum area rectangle
|
||||||
|
rect = cv2.minAreaRect(hull_points.astype(np.float32))
|
||||||
|
box = cv2.boxPoints(rect)
|
||||||
|
box = np.int0(box)
|
||||||
|
|
||||||
|
return box
|
||||||
|
|
||||||
|
|
||||||
|
class DetTextDocument(object):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
adapter: InferenceAdapter,
|
||||||
|
img_size: Union[int, Tuple[int, int]] = 736,
|
||||||
|
thresh: float = 0.2,
|
||||||
|
bbox_thresh: float = 0.5,
|
||||||
|
unclip_ratio: float = 2.0,
|
||||||
|
):
|
||||||
|
self.infer_obj = Inference(adapter)
|
||||||
|
|
||||||
|
if self.infer_obj.health():
|
||||||
|
logger.info(f"Init {self.__class__.__name__} done")
|
||||||
|
else:
|
||||||
|
logger.error(f"Init {self.__class__.__name__} fail")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
self.pre_process = DBPreprocess(img_size=img_size)
|
||||||
|
self.post_process = DBPostProcess(
|
||||||
|
thresh=thresh,
|
||||||
|
bbox_thresh=bbox_thresh,
|
||||||
|
unclip_ratio=unclip_ratio,
|
||||||
|
score_mode="fast",
|
||||||
|
)
|
||||||
|
|
||||||
|
def inference(
|
||||||
|
self,
|
||||||
|
img: npt.NDArray[np.uint8],
|
||||||
|
) -> Tuple[List[Optional[npt.NDArray[np.int32]]], List[Optional[float]]]:
|
||||||
|
pre_processed_img, _ = self.pre_process(img)
|
||||||
|
outs_dbnet = self.infer_obj.inference({"input": pre_processed_img}, ["output"])
|
||||||
|
|
||||||
|
if not outs_dbnet:
|
||||||
|
return [], []
|
||||||
|
|
||||||
|
_, bbox_lst, score_lst = self.post_process(
|
||||||
|
outs_dbnet[0][0], img_shape=(img.shape[0], img.shape[1])
|
||||||
|
)
|
||||||
|
return [bbox.astype(np.int32) for bbox in bbox_lst], score_lst
|
||||||
|
|
||||||
|
|
||||||
|
class RecPreprocessImage(object):
|
||||||
|
def __init__(self, rec_image_shape):
|
||||||
|
self.rec_image_shape = rec_image_shape
|
||||||
|
|
||||||
|
def __call__(self, img):
|
||||||
|
imgC, imgH, imgW = self.rec_image_shape[:3]
|
||||||
|
max_wh_ratio = imgW / imgH
|
||||||
|
h, w = img.shape[:2]
|
||||||
|
ratio = w * 1.0 / h
|
||||||
|
max_wh_ratio = max(max_wh_ratio, ratio)
|
||||||
|
imgW = int((imgH * max_wh_ratio))
|
||||||
|
if math.ceil(imgH * ratio) > imgW:
|
||||||
|
resized_w = imgW
|
||||||
|
else:
|
||||||
|
resized_w = int(math.ceil(imgH * ratio))
|
||||||
|
resized_image = cv2.resize(img, (resized_w, imgH))
|
||||||
|
resized_image = resized_image.astype("float32")
|
||||||
|
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
||||||
|
resized_image -= 0.5
|
||||||
|
resized_image /= 0.5
|
||||||
|
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
|
||||||
|
padding_im[:, :, 0:resized_w] = resized_image
|
||||||
|
return padding_im[np.newaxis, :]
|
||||||
|
|
||||||
|
|
||||||
|
class RecTextDocument(object):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
adapter: InferenceAdapter,
|
||||||
|
vocab_dict: str,
|
||||||
|
):
|
||||||
|
self.pre_process = RecPreprocessImage(rec_image_shape=[3, 48, 320])
|
||||||
|
self.infer_obj = Inference(adapter)
|
||||||
|
|
||||||
|
if self.infer_obj.health():
|
||||||
|
logger.info(f"Init {self.__class__.__name__} done")
|
||||||
|
else:
|
||||||
|
logger.error(f"Init {self.__class__.__name__} fail")
|
||||||
|
sys.exit(1)
|
||||||
|
vocab_dict += " "
|
||||||
|
self.post_process = CTCLabelDecode(vocab_dict, use_space_char=True)
|
||||||
|
|
||||||
|
def inference(self, img: npt.NDArray[np.uint8]) -> Tuple[str, float]:
|
||||||
|
preprocessed_img = self.pre_process(img)
|
||||||
|
if res := self.infer_obj.inference(
|
||||||
|
{"x": preprocessed_img}, ["softmax_2.tmp_0"]
|
||||||
|
):
|
||||||
|
sent, probs = self.post_process(res)[0]
|
||||||
|
probs = [probs]
|
||||||
|
return sent, round(sum(probs) / len(probs), 5)
|
||||||
|
return "", 0.0
|
||||||
|
|
||||||
|
|
||||||
|
det_model = DetTextDocument(
|
||||||
|
OnnxInferenceAdapter(
|
||||||
|
model_name=DET_MODEL,
|
||||||
|
version="1"
|
||||||
|
),
|
||||||
|
# TritonInferenceAdapter(
|
||||||
|
# triton_server=TRITON_SERVER_URL,
|
||||||
|
# model_name=os.path.basename(DET_MODEL),
|
||||||
|
# ssl=False,
|
||||||
|
# ),
|
||||||
|
img_size=736,
|
||||||
|
unclip_ratio=1.7,
|
||||||
|
)
|
||||||
|
rec_model = RecTextDocument(
|
||||||
|
OnnxInferenceAdapter(
|
||||||
|
model_name=REC_MODEL,
|
||||||
|
version="1"
|
||||||
|
),
|
||||||
|
# TritonInferenceAdapter(
|
||||||
|
# triton_server=TRITON_SERVER_URL,
|
||||||
|
# model_name=os.path.basename(REC_MODEL),
|
||||||
|
# ssl=False,
|
||||||
|
# ),
|
||||||
|
vocab_dict=get_vocab_str(VOCAB_DICT),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def ocr_extraction(
|
||||||
|
img_path: str
|
||||||
|
) -> dict:
|
||||||
|
org_img_bgr = cv2.imread(img_path)
|
||||||
|
|
||||||
|
# text detection
|
||||||
|
bbox_lst, _ = det_model.inference(org_img_bgr)
|
||||||
|
|
||||||
|
word_info = []
|
||||||
|
for bbox in bbox_lst:
|
||||||
|
# text recognition
|
||||||
|
text_img = four_point_transform(org_img_bgr, bbox)
|
||||||
|
word, conf_text = rec_model.inference(text_img)
|
||||||
|
word_info.append(
|
||||||
|
[min(bbox[:, 0]), min(bbox[:, 1]), max(bbox[:, 0]), max(bbox[:, 1]), word]
|
||||||
|
)
|
||||||
|
|
||||||
|
return word_info
|
||||||
|
|
||||||
|
|
||||||
|
def visualize_ocr(img_path: str, word_info):
|
||||||
|
org_img_bgr = cv2.imread(img_path)
|
||||||
|
for i, (x1, y1, x2, y2, word) in enumerate(word_info):
|
||||||
|
cv2.rectangle(org_img_bgr, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||||
|
cv2.putText(
|
||||||
|
org_img_bgr,
|
||||||
|
word,
|
||||||
|
(x1, y1 - 10),
|
||||||
|
cv2.FONT_HERSHEY_SIMPLEX,
|
||||||
|
0.5,
|
||||||
|
(0, 200, 0),
|
||||||
|
2,
|
||||||
|
)
|
||||||
|
|
||||||
|
cv2.namedWindow("Image with Annotations", cv2.WINDOW_NORMAL)
|
||||||
|
cv2.imshow("Image with Annotations", org_img_bgr)
|
||||||
|
cv2.waitKey(0) # Wait until a key is pressed
|
||||||
|
cv2.destroyAllWindows() # Close the image window
|
||||||
7
awesome-SynthHandwritten/README.md
Normal file
7
awesome-SynthHandwritten/README.md
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
A curated list of awesome synthetic handwritten text datasets.
|
||||||
|
|
||||||
|
- https://github.com/Belval/TextRecognitionDataGenerator \
|
||||||
|
- https://github.com/oh-my-ocr/text_renderer \
|
||||||
|
- https://github.com/Grzego/handwriting-generation \
|
||||||
|
- https://github.com/sleep3r/Diffusion-Handwriting-Generation.pytorch/tree/main/diffusion_handwriting_generation \
|
||||||
|
- https://github.com/ankanbhunia/Handwriting-Transformers?tab=readme-ov-file \
|
||||||
0
synthetics_handwritten/README.md
Normal file
0
synthetics_handwritten/README.md
Normal file
Reference in New Issue
Block a user